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Blowout bifurcations and the onset of magnetic dynamo action
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This paper numerically investigates the magnetohydrodynamic equations in three dimensions with
periodic boundary conditions in a parameter range where a forced fluid flow is chaatic. It is found
that the transition talynamo actionwhereby the magnetic field is sustained by interaction with the
forced flow, is ablowout bifurcation The blowout bifurcation is typified by bursting behavior, or
“on-off intermittency.” In particular, near the transition there are short, intermittently occurring
bursts of strong magnetic field activity where the total magnetic energy is comparable to the total
flow kinetic energy. Between these bursts the magnetic energy is very small. As one approaches the
transition from the dynamo-active side, the time between bursts becomes longer and longer,
approaching infinity at the transition. Numerical verification is given for the presence of signature
scaling laws in numerical computations utilizing a pseudospectral model with triply periodic
boundary conditions. This work implies specific testable predictions for experimental dynamos.
© 2001 American Institute of Physic§DOI: 10.1063/1.1342228

I. INTRODUCTION there are short, intermittently occurring bursts of strong mag-
netic field activity where the total magnetic energy is com-
It is believed that the magnetic fields of the Earth andparable to the total flow kinetic energy. Between these bursts
Sun are created bglynamo actionwhereby the kinetic en- the magnetic energy is very small. As one approaches the
ergy of a convection-driven flow of an electrically conduct- transition from the dynamo-active side, the time between
ing fluid is converted into magnetic energyThis system, bursts becomes longer and longer, approaching infinity at the
called amagnetohydrodynamic (MHD) dynarrtaas been the transition. This is illustrated by the results in Figgajland
subject of intense study® 1(b) from our three-dimensional numerical dynamo compu-
A number of groups are pursuing experimental programsation (described in Sec. I}) which showsb(t) (a global
aimed at the realization of dynamo action in the measure of the magnetic field strength, see Set.vBrsus
laboratory®>~1* The efforts in Rig& and Karlsruh& self-  time for two parameter values just past the onset of dynamo
generate in constrained geometries which severely limit thaction. The parameter value of Figblis closer by a factor
turbulent fluctuations by internal walls. Other efforts, in of 2.5 to the critical onset value than is the parameter value
Cadaraché! Madison? Socorro'® and College Park* have  of Fig. 1(a). Correspondingly, we observe that bursting is
(or are planned to hayerelatively unconstrained stirred less frequent in Fig. (b) than in Fig. 1a). The previous
flows in liquid sodium with typical hydrodynamic Reynolds discussions of blowout bifurcations have occurred in the
numbers of R- 10’ leading to a vigorous turbulent flow. The context of chaotic dynamical systems. For the purposes of
transition to dynamo action in these unconstrained systemsur discussion, and to make contact with the language used
will be strongly influenced by the turbulent character of thein previous discussions of blowout bifurcations, we shall re-
flow. fer to a turbulent fluid flow as chaoti€While chaos is often
Itis to be expected that as the forcing and/or size of suclthought of as resulting from low-dimensional systems, and
experiments is increased or the geometry is made more faurbulence is often thought of as being “high dimensional”
vorable, a transition to dynamo action will be achieved. Theor as possessing “many active degrees of freedom,” this
object of this article is to investigate what the character ofdistinction is not necessary in the present context.
this transition will be. We find that a likely scenario is that In our studies we use the following nondimensional
the transition to dynamo action will be via a type of bifurca- MHD equations:
tion called ablowout bifurcation one which has been studied
in other settingd®2*Based on this, it is to be expected that " +(V-V)V=—Vp+R V2y+(VXB)XB+F(x),
the transition will be characterized by intermittently bursting t

magnetic fields which obey scaling lawsxplained subse- @
quently near the transition. In particular, near the transition g

St TV V)B=(B-V)v+ R, 'V2B. 2
*Paper GI2 2, Bull. Am. Phys. Sod5, 120 (2000. . . . . . "
vai?ed speaker.u Y (2000 Equation(1) is the Navier—Stokes equation with additional
dAlso at Department of Electrical Engineering. terms representing the Lorentz force and an external force,
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FIG. 2. b(t) vs t. When the magnetic Reynolds number,,-R7.81, is
slightly below the transition value and a small external magnetic field is
(b) applied,B,=1.6x 103, b(t) displays intermittent burstingWhen no ex-
ternal field is appliedb(t) does not show sustained burst activity, but,
rather, eventually decays to zefo.

tem we observe bursting of the magnetic energy wiagthe
magnetic Reynolds number is just above the transition value
(Fig. 1) or (b) the magnetic Reynolds number is just below
the transition value and a small external magnetic field is
applied to the syster(Fig. 2).

We now give some background on blowout bifurcations.
We consider a dynamical set of equations evolving the sys-
tem state forward in time. We imagine a given state of the
La system to be a point in the phase space of the system. For
S 2 25 example, in the dynamo context, the dynamical system is

Egs. (1)—(3) plus boundary conditions, and the system state
FIG. 1. (a) b(t) vst, wheret is in units of 1¢ time steps. The trace df(t) at timet is given by the vector fieldg(x,t) andB(x,t) (i.e.,

bursts when the magnetic Reynolds numbegt:=R.06, is slightly above the . . . L
transition value. A burst is defined as the time whét) crosses a threshold by the magnitudes and directions\o&ndB at each point in

value(shown here ab,=0.8 by a horizontal link (b) A similar figure with ~ SPace. Thus, the phase space is, in principle, infinite dimen-
Rn=7.96, closer to the transition value of,R=7.88 (but still above tran-  sional(a function space

sition). Note that the maximum value bfis about 2.5 while is of the same Attributes which characterize a system possessing a

order(from Fig. 6, typically about  implying that the magnetic energy at 1|0\t bifurcation are as followsi) There is an invariant

nonlinear saturation is of the order of the flow kinetic energy. . . . .
manifold in the phase space of the syst¢By an invariant
manifold we mean a subset of the phase space where the

and Eq.(2) is the magnetic induction equation, derived from Subset is a smooth hypersurface such that if an initial condi-

Faraday's law, Ampere’s law, and Ohm’s law, and the asfion (statg is placed on the hypersurface, then the subse-

sumption that the fluid is incompressible: quently evolving state remains on the hypersurface for all
Vov—0 3 time ] (ii) Initial conditions placed on the invariant hypersur-

face evolve to chaotic solutiorise., there is a chaotic attrac-
The parameters R and,Rare the hydrodynamic and mag- tor for such initial conditions (iii) For parameter values
netic Reynolds numbers. The external fofe&) in (1) is below the critical value at which the blowout bifurcation
described in Sec. 1. occurs(in the context of the dynamo, R R, where R,
is the critical magnetic Reynolds numlethe chaotic mo-
tion in the invariant manifold is attracting in the full phase
space in the sense that almost all infinitesimal perturbations
The bifurcation we are discussing is the transition from aof the chaotic motion in the directions transverse to the in-
nondynamo systeni.e., the total magnetic energy always variant manifold decay exponentially in a suitable average
decays to zenowith chaotic time variation of the flow field sense. Here, by this we mean that the Lyapunov exponents
to a dynamo system with chaotic time variation of the flowfor perturbations from the chaotic attractor in the invariant
and the magnetic energy. surface are negative when those perturbations are transverse
The most striking feature of this type of bifurcation is to the invariant surfacdiv) As a parameter value increases
bursting (so-called on—off intermittengy>*’~2%In our sys-  through the critical blowout valug.g., R, increases through
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Rmod one of the transverse Lyapunov exponents increase: 06
from negative value¢for R, <R, to positive valuedfor
R.>R.J. Thus, the chaotic attractor for initial conditions %[ o |
in the invariant manifold loses its average stability to trans- ;5| o ® *
verse perturbationg§While we refer to chaos on the invariant . *
manifold, we should note that the role of chaos in the blow-  o|------------------ e s
out bifurcation can be replaced by suitalffeondeterminis- |, . ® ¢ i
tic) stochastic processes with no essential change in the -0.2f . !
blowout bifurcation phenomenaee Sec. IV A and Refs. 15 .® * !
and 20.] 047 o’ !
The presence of an invariant mainfold allows one to de- _, ol ..' !
fine local transverse variablése., variables measuring the o* !
distances locally orthogonal to the manifpldnd approxi- —0.8t :
mate their dynamics near the manifold as linear. The on- \

manifold motl_on gen_encally influences the transverse vari- -1 e e 5 55 24 26 28 3
ables by altering their growth rates. That is, small transverse R
displacements from a state on the invariant manifold generi-
cally increase or decrease at different local, linear growthFIG. 3. Transverse Lyapunov exponéhj as a function of magnetic Rey-
rates depending on where the state is located on the invariapglds number, B. The data points were calculated from 572 kinematic
ifold. Si th fi the i iant ifold is ch LOM simulations[i.e., linearized simulations in which the Lorentz force on
mf’im old. since _e motion on thé invanant mani 0 IS Cha-ye right-hand side of Eq1) is omitted started from independent, random
otic, these local, linear growth rates are changed in an effegnitial conditions, using various values of,R The estimate oh for a given
tively random manner. This situation for small deviationsvalue of R, is taken to be the average of the straight-line fits to the plots of
from the invariant manifold, Coupled with nonlinearity for log b(t) vst for all simulations(typically four) taken at a given value of R
| deviati . l . . l The length of the simulations varied depending on the growth rate experi-
arge tr.ansverse_ GVIatlonS,NITgEZIeS V_ar'ous signature _scla INghced by the magnetic field during that simulation. The magnetic field was
laws (discussed in Sec. IN®171°-22yhich are characteristic allowed to grow tob(t)/b(0)=10°® for R,,> Ry, or decay tob(t)/b(0)
of blowout bifurcations. =103 for R,<Ry. where these limits are those of IEEE double-
We now discuss how the problem of MHD dynamo on- precision number$.The transition to dynamo action occurs ag Passes
. . . from R, <Rp=2.193 to R,>Rc-
set corresponds to conditiofig and (ii) for a blowout bifur-
cation. SettingB=0 we obtain the usual Navier—Stokes
equations(the Lorentz force term is zero f@=0). In par-
ticular, B=0 is a solution of(2), and this represents an in-
variant manifold in the fulB—v phase space. Thus, condi-
tion (i) for a blowout bifurcation is satisfied. For sufficiently
large fluid Reynolds number, R, th@nagnetic field-frep
Navier—Stokes equations are typically turbulent. That is, th
system evolution is chaotic on the invariant manif@ée-0
[condition (ii)].

With respect to condition§ii) and(iv), refer to Fig. 3,
which shows the results of numerical computations of the
largest transverse Lyapunov exponéntersus R,, with R
and F(x) chosen so that behaves chaotically in timéee
Sec. lll for detail$. The transverse Lyapunov exponent is h=lim h_(5b(x,0),t). 5)
denotedh and is computed by setting=0 in (1) (the Lor- T

entz force is quadratic if8 and hence is absent to linear Note that the infinite time exponent is presumed to be the
ordep and solving the resulting set of equatiofi3—(3) for  same for all choices dfand almost all choices of the initial
the linear evaluation of the magnetic field perturbati#n  perturbationsb(x,0). Thus, the infinite time exponent has a
(This problem is commonly referred to as the kinematic dy-definite numerical value. The finite time exponent, in con-
namo problenf~*°"9 We see from Fig. 3 that as,Rs in-  frast, fluctuates with. One experimental grodphas mea-
creased there is a transition from negativéo positiveh.  sured the probability distribution for these fluctuating finite
The value of R, at which this transition occurs is the critical time exponentsh,. They do this by applying a magnetic
value for dynamo onset R. Below R, initial magnetic  pulse of fixed strength and fitting a straight line to a semilog
field perturbations all eventually decay to zdondition  plot of the measured, decaying magnetic field strength versus
(iii)]. Note, however, that for R<R., although there is time over a time interval of length. h, is the slope of this
always eventual decay B=0 (i.e., to the invariant mani- line. (Because their experimental,Rs relatively far below
fold), the magnetic field time evolution may show finite R, theh, values they determine are all negatjvi@epeat-
stretches of time where growth takes place. FPR,c, ing this many times they obtain many values tof from
infinitesimal perturbations froB=0 tend to grow on aver- which they construct, via the histogram method, their experi-
age[condition(iv)], and our fully nonlinear numerical com- mental probability distribution function. This distribution is

putations of solutions of Eq$1)—(3) indicate strongly fluc-
tuating large magnetic fields persisting for all tirtfég. 1).

We emphasize the difference between the finite time
magnetic field instability growth ratéor Lyapunov expo-
neny and its infinite time limit. Specifically, for a particular
?=0 infinitesimal perturbation,sb(x,0), the finite time
Lyapunov exponent for the time interviato t+ 7 is

1
h-(db(x,0),t)= —In[[| sb(x,t+ 7)[/]|8b(x,1)][] 4

and the infinite time exponent is



Phys. Plasmas, Vol. 8, No. 5, May 2001 Blowout bifurcations and the onset of magnetic dynamo action 1947

0.16 4 1] T T T T
L ]
0.14f 3.5} ]
0.12r 3t ]
L ]
011
Q(hr) 25‘ T
0.081 h ol |
L
0.061
1.5r 1
0.04r
1t . -
0.02F
. ° ]
0.5¢ * 1
0.03
h o ! L ! !
K 0 2 4 6 8 10

FIG. 4. Probability distribution functionQ(h,), of finite-time transverse

Lyapunov exponentsh,, for =5 (giving 578 samplgsand R,=7.96, FIG. 5. Magnetic field growth ratdy, vs largest mode in simulatiot, The
slightly above transition, R.=7.88. The average value bf in this distri- simulation appears to have convergedat 6. All simulations for this fig-
bution is(h,)=2.80x 10 3. We estimate thab =0.02. ure were performed with R=12.6.

well fit by a Gaussian. This very graphically illustrates the

expected stochastic nature of the growth/decay of small mag- fio = —Ii E k
netic field perturbations, and is one of the key aspects of the ' B
dynamics necessary for a blowout bifurcation. We also see

such a distribution in our simulatiofsee Fig. 4. In our Oa=12 kg Bm.sBn.a €))
simulation(as in the experiment of Ref. 14 is the chaotic B mEn=k

flow field (i.e., motion on the invariant manifoldhat gives

B Um,gUn,a> (7)
m+n=k

rise to the distribution. Mea=12 Kg Vm.Br.as (9)
B m-+n=k
IIl. COMPUTER SIMULATION )
. Ska=12 kg 2 B guna (10
We use a pseudospectral method to simulate Egs. B 'min=k

(3), as described in Refs. 25-27, which consists of a set f here the final term in Eq(6) is the form of — Vp that is
first-order ordinary differential equation®DES governing  oqjired when one insists that conditié8) hold. The simu-

the evolution of the coefficients of spatiaI_Fourier exp::msionsfation consists of evolving this set of Fourier coefficients
of v(x,t) andB(x,t). We expand the solution t0 Eq9)~(3)  oryard in time with a fourth-order, adaptive time-step,
[i.e., the pair of vectors(x,t) andB(x,t)] in truncated Fou- Runge—Kutta integrator.

rier seres The nonlinear terms, Eqé7)—(10) are convolutions and
K K K are evaluated when needed by transforming the variables to
vix,= > > D v(hekx real space using a fast Fourier transfdfffrT), performing a
k= K k= mK =K pointwise product, and transforming back to Fourier space
K K K using an inverse FFT.
Bix,t)= > 2 2 BtekX The parameter values used were ®32,K =6, and R,
ko= —K ky="K k="K was varied from 7.81 to 8.16. There areK(21)3—1 ex-
with truncation at mode numbé¢ in each component df  citedk vectors which, foilkK =6, yields 2196 excited vec-
(wherek,, ky, k, are integers The sets of solutions acces- tors. For the valu& =6, the simulation is converged K.
sible to this method, therefore, are those for whichndB ~ We tested for convergence by measuring the growth rate of
are spatially periodic with period2and have structures no the magnetic energy for a case with,R12.6, somewhat

smaller than zr/K. above R,., using the kinematic dynamo simulati¢starting
The partial differential equation®®DES given by Egs. from random initial conditionsat successive, increasing val-
(1)—(3) then become the set of ODESs: ues ofK. The results are shown in Fig. 5.

Due to the large amount of computation needed to verify

MNe_ _ V| K| 2+ f+ g+ Fk_kLg;’LFk), one of the scaling laws, a lower-order modeOM), with
ot K| K =1, was employed for the purpose of comparison with that
9By (6) scaling prediction. For all other purposes a higher-order
o —\|K|?Be+r—sq model withK =6 (HOM) was used[While the LOM is not

converged, it shows the same qualitative and scaling behav-
where iors as found in the higher-order mod&lOM).]
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9 , ' , - - , model uses a discrete time variables0,1,2,..., and ad-
vances a non-negative varialiie[analogous td(t) in Fig.
8r i 1] forward in time by a linear stochastic rule
7T 1 byt 1= 7y (12)
ol if by,;=<1. Heren,=0 is a growth factor randomly chosen
7 at each timet according to some probability distribution
5 function. If (11) ever gives,, ;>1, thenb,, ; is set equal to
one. This nonlinear aspect of the model reflects, for example,
4 the physical saturation mechanism in the dynamo whereby
the maximum value attainable by the magnetic field energy,
3l ! Eg(t), is limited to be of the order of the total fluid flow
0 20000 kinetic energy. Introducingz,=log(1lhb,) and &=log(z),
> . . . . . . Eq. (11 yields a random walk iz=0,
0 200 400 600 800 1000 1200 1400

t Zi 1172~ &, (12

FIG. 6. Norm of the flow velocity versus time whete= =, [v,[>. The . : -
inset shows a much longer traces0< 2 x 10%, showing that this behavior with an wppgnetrable boundary a=0 (from the upper

persists for long times. We measured the largest Lyapunov exponent for thi@ound onb, b<1). For a given realization of the random
trace to beh,=0.41, which, sincér,>0, shows that the motion is chaotic. processé;, finite time (7) Lyapunov exponents fofll) are
This trace was taken from a fluid-only simulation with Reynolds numbergiven by

R=6.3.

1T+T
hr:_E &t
Tt=T

iX), EvaluatingﬁT for many values off, we can obtain a distri-
bution function forﬁT [analogous to the distributio@(h,) in
Fig. 4]. In the limit that 7—oo, this distribution function ap-
Flor10=3(XFi2). proaches a delta function at the usu@hfinite time)
For B=0, if the flow is assumed to be time independent, thiSLyapunov exponent. That is, with probability one, a given

forcing yields the so-called ABC floWw?® given by v, realization of the random procegsyields
=RF, /|k|?. For R=6.32, the ABC flow is unstable. Non- h=limh

forced flow modes are coupled to the forced modes by the e

nonlinear termf,, Eq. (7), and the resulting flow exhibits
Eulerian chaos. That is, the Fourier coefficiemi$t) and
By (t) evolve chaotically in time. Figure 6 shows a trace o
v=+2|v,|? versus time for, R=7.88, a non-dynamo-action

The forcing termJF,, has the form

F(O,O,il)zé(y
1(z

Fix100=3(ZFiy),

independent of the starting time [see also Eq(5)]. For
¢finite 7, however, there is a spread bf values abouth
which decreases to zero adecomes large:

parameter value. This flow was verified to be chaotic by <(ﬁ —ﬁ)2>~2D/r. (13)

computing the largest Lyapunov exponent to Hye=2.92 T

>0. We defineh, by In Eq. (13) the quantityD is the diffusion coefficient associ-
| vy ~ehit ated with the random walkl2), D =(&2)/2. We note that by

fitting a straight line tor?((h,— h)?) vs 7 for our dynamo we
for infinitesimal separations between initial conditiods. can use Eq(13) to obtain a numerical estimate of the diffu-
We computedv by linearizing Eq.(1) with B=0 and inte-  sion coefficier® D for our problem(or any blowout bifur-
grating until |v| has grown by a factor of~10°°>. We  cation problem In particular, we use Eq4) and Eqs(6)—
estimateh, by the slope of a straight line fit to a log-linear (10) linearized abouB=0 to computeh . at fixed~and many

plot of |8v,| vst. different timest. The variance of this collection df. values
yields an estimate of(h,—(h,))?) and, via histogramming,

IV. PREDICTION AND RESULTS we can also estimate the probability distribution function
Q(h,) in Fig. 4.

A. Model for intermittent bursting Analysis of the simple model above yields results which

A convenient way to analyze blowout bifurcations is we summarize in the next subsection.
through a simple model which we will describe in what
follows >21:22The motivation for using the simple model is
that it is suspected that it yields the same phenomenolog
and scalings as real situations. In the language of statistical’
physics, typical situations yielding blowout bifurcations are  In Refs. 15, 17, and 19-22 various scaling relations are
in the same universality class as this model. Our numericgbredicted for blowout bifurcations, all of which can be de-
results and past wotk®?1?2support this hypothesis. The rived using the simple stochastic model of Sec. IVA. We

Predicted scalings just above transition (Rn>Rpe)
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summarize the blowout scaling results relevant to our studies 1

for Ry>Rnc, where in all cases it is presumed that(R 0.t
—Ryd/Ry<1.
(1) Time average distance from the invariant manifold 0.8
We define a magnetic field normb(t)=[3,|B|*]*? 07} >

=[Q Y [[o|B(x,y,z,t)|2dxdydZ¥? whereQ=(27)3 is 06l .
the simulation volume. Thug(t) provides an instantaneous <b(t)>
global measure of the magnetic field activity over the simu- 9} .
lation volume. The quantitp(t) is related to the total mag- 0.4}
netic energy,Eg(t), by Eg(t)=1/20b(t)2. Alternatively,

b(t) is the Euclidean distance of the system state from the
B=0 invariant manifold. Letb(t)) denote the time average 0.2

03r

of the bursting time serid3(t) vst (see Fig. 1L Then(b(t)) 01 .
is predicted® to scale linearly with (R— R0, et . . . . .
0 0002 0004 0006 0008 001 0012 0.014
(b(1))~(Rn= Rmnc)/ R (14 R -R_)R__

As (Rn—Rn increases from Zem(‘b(t)) increases due to FIG. 7. (b(t))~(Rn—Rnd/Rnc. The points are averaged over 112 simu-

the greater frequency of bursts, Wh“%axv t_he maXimL_lm lations or a total of approximately>810° samples ob(t).
value ofb(t) observed over a long time series consisting of

many bursts, remains essentially constant.
(2) Fractality of the set of burst timedVe define the D l<A<D/h2 (29

burst times as the.set of times at Wh‘b(“) .crosses. SOME  Note that the scaling rangd47) and (19) increase as the
threshold valueb, in the upward direction; see Fig.(a& transition is approached sinte- (R, —R..) (see Fig. 3
where the chosen threshold value is shown as a horizontal (4) Probability distribution of nl]{t) mPicking a timet

line, b:?O 'f In genera]!,bwe can ghiosg the th;esthId t? berandomly from the range of times over a long time series of
someO(1) fraction3 of Dmax (i-€., bo= SBmay) and the scal- b(t), the value ofo(t) at that instant is a random variable.

ings based on this thresholdifigs.(15)~(19)] are indepen-  \ya genote the probability distribution function &f by

dent of the choice of<1. |5(b). Operationally,P(b) can be estimated by choosing

Imagine that we plot the burst times along thexis . : . ) .
. many random times and histogramming. It is predicted that
betweent=0 and some very long time=T, and then we - o
P(b) has a power law behavior in

rescale this long time interval to the unit interval by normal-
izing t to T. In that case, in the double limit—c followed P(b)~b?, y=(h/D)-1, (20)
by (Ry,—Rmd— 07", the set of normalized burst times in the
unit interval is predictetf to approach a fractal set with box-
counting dimension

for b<bax-
To summarize, Eq(14) characterizes the scaling of the
bursting behavior with R. Equationg15)—(20), in contrast,
d=3. (15  address the characteristics of th&) time series at dixed
small value of (R—Rno/Rne>0. Equations(15)—(19)
characterize the bursi8,while Eq. (20) characterizes the
small magnetic fluctuations between bursts.

Without normalizing time and considering (R R, to be
small but nonzero, this corresponds to

N(8t)~(8t) "¢, (16)

where thet axis has been divided into segments of length ~ C- Results for R >R, above transition

andN(ét) is the number of these segments that is needed to  The simulation results verifying the presence of the scal-
cover the set of burst times. This scaling is valid in the ranggngs given in Eqs(14)—(20) are shown, respectively, in Figs.
7-10.
D 1< 5t<%, (17) Figure 7 shows the results of 112 simulations of the
LOM. The plot shows the linear behavior of the average
where h is the average transverse Lyapunov exponent Eqvalue ofb(t) vs (R,—Rnd/Rny (where R,.=2.193 for the
(5). LOM) as predicted by Eq14). The LOM was used because
(3) Distribution of interburst intervalsLet t; andt;, ; the time to compute similar data for tle=6 model(HOM)
be two successive burst times as described above.jfhhe was prohibitively long due to the necessity of doing long
interburst interval is defined a&;=t;,,—t;, and, given runs for many values of R This is in contrast to verifying
many burst times, we can use the histogram procedure the scalingg15), (18), and(20) which require only a single
obtain a probability distribution function for the interburst long run at one fixed value of R and for which we have
intervals,P(A). This probability distribution is predicted to been able to use our HOM. We note that the LOM and the
have a—3 power law form, HOM give the same results for the scalind®), (18), and
P(A)~A 32 (18) (20), and we take this as evidence that the scall), veri-
' fied in Fig. 7 with the LOM, should apply to the HOM as
in the range well.
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FIG. 8. Fractal dimension of the set of burst times above transition. Thq:IG. 10. Probability distribution ofb(t) |5(b) after transition (R,

: s _ —12 3 Lo N :
predicted scaling iN(ot)~(6t)" ™% Eq. (15), for the range 10°<ét >RnJ. The slope of the offset line ib/D=0.13, indicating a signature

<101 i i i A
<10™". The points markedd were computed by measuring burst times scaling ofP(b)~b"P~1, Data were taken at R=7.96; see caption to Fig.
from four simulations with a total aggregate running time of approxmately4 for details

6x10* time units (Gt is normalized by the total running tineising a
threshold ofby=0.79, at parameter J=7.96.
old (in this caseby=0.8); varying the threshold value be-
_ ) tweenby=0.6 andby=1.1 did not change the scaling.

Figure 8 showsN(ot) vs &t, for the HOM with R, Figure 10 shows a log-log plot &fP(b) vs b obtained
=7.96>Rp.=7.88, plotted on a log-log scale. Accordlnlg 10 by applying the histogram procedure with an ensemblb of
(15—(17) this plot should be I|ne3ar with s_I(l)ped= ~ 2 values generated by samplitgt) at many evenly spaced
(solid line in Fig. § in the range 10°<5t<10"" [Eq.(17)],  {imest over the duration of three long time series. The data
where&t is normalized to the total running time. The data in yere taken at R=7.96 (R,>R.J). Also plotted in Fig. 10
this range appear to conform well to the scaling E). is a line of slopen/D =0.13, which is the slope predicted by

In Flg 9 we plOt the probablllty distribution function of Eq (20) The data conform reasonably well to this prediC-
interburst times versus the interburst time to show that thrﬁon_

scaling Eq.(18) holds for the converged, HOM, system. The
solid line in the figure has the theoretical Slope—eg, and D. Below threshold (R <R ) with a small applled
the extent of this line indicates the expected scaling ranggtimulus e

given in Eqg.(19). Our result is robust to the choice of thresh- - .
Just before transition (<R, the function b(t)

bursts when a small, uniform, external magnetic fiekd,
> =Bz, is applied(see Fig. 2 Equation(15) is also predicted

10 . ' ' to holdP? in this case but in the range
2
10'F ] D‘1<5t<—(ln(D[;Bo))_
Figure 11 confirms this prediction using the HOM. The scal-
10° ¢ 1 ing range forét in this case is 10°<6t<10 1.
P(A) Figure 12 shows our numerical estimatesing the
4 HOM) of bP(b) vsb for R,=7.76 (R,<R,.=7.88). These
10 E data were taken with an applied external field with magni-
tudeBy=0.166. The offset line is the theoretically predicted
2 slope ofh/D=—0.17. (Note that in contrast to the case R
10 E >R, Fig. 10, the predicted slope is negative because now
h<0.) The scaling is predicted to hold fdy,,>b>B,,
10° , , , whereb,,,~2.6. The data are seen to be roughly consistent
10° 10' 122 10° 10*  with Eq. (20).

FIG. 9. Distribution of interburst times slightly above transition (R E. Possibility of hysteretic dynamo onset

=7.96>Rnd. The predicted scaling i(A)~A"*% Eq. (18). The points Finally we note that in Ref. 17 it is emphasized that

marked® were computed by measuring burst times from the traces with % . . . . L.
total running time of approximately 7000 time units using a threshold of PlOWoULt bifurcations can be either nonhysterétapercriti-

bo=0.8[see Fig. 1b)]. The offset line has the predicted slopé. cal) or hysteretigsubcritica). In our article, since our MHD
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' ' namo action. In particular, we have verified the presence of
this transition by computing the scaling behavior of various
measured model quantities.

Although the boundary conditions used in our simulation
are not appropriate for constructing an accurate, detailed,
model of any of the dynamo experiments being carried out in
laboratories, we believe that our result applies to such sys-
101 * 1 tems. The blowout bifucation is conjectured to be typitaf
. dynamical systems possessing the attribuigs(iv) pre-

¢ sented in Sec. Il. The MHD dynamo equations and at least
one experimental systéfhpossess these attributes, and we
have verified numerically that our simulation of the MHD

[ J
equations undergoes the blowout bifurcation. Based on this
* 0 evidence we predict that experimental MHD dynamo sys-
100 ) =] 10° tems with unconstrained turbulent flow should experience a

10 ot 10 blowout bifurcation as their transition to dynamo action and
_ , _ B that, if this transition is nonhysteretic, it will be characterized
FIG. 11. Fractal dimension of the set of burst times, below transitign (R by intermittently bursting magnetic fields.

=7.76<R;, with an externally applied magnetic field. The predicted scal- g . .

ing isN(a?)C)N(at)—uz’ Eq.(laflfo??he rangﬂ 102<5t<10—1.p-|-he offset ~ We suggest three specific ex.p.erlmental tests of this pre-

line has slope- . The external field had a magnitude B§=0.166. diction. First, just below the transition, pulse-decay measure-
ments could verify the existence of a broad finite time

Lyapunov exponent distribution comparable to Fig. 4. Sec-

simulation gives a nonhysteretic blowout bifurcation, weond, applying a small seed fielgvhich is, in fact, usually
have only discussed this case. We point out, however, thatinavoidable in an experimental settingould cause bursts
for a different situatior(e.g., different forcing, geometry, or Similar to Fig. 2 with a fractal set of bursts timéBig. 11).
boundary conditions it may be possible that the bifurcation Finally, an experiment performed above transition should
to dynamo action will be hysteretic. In such a case, a previalso show a fractal set of burst timesmilar to Fig. 8.

ously develope® phenomenology and scalings for hyster-

etic blowout bifurcations would be expected to apply. ACKNOWLEDGMENTS
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