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Blowout bifurcations and the onset of magnetic activity in turbulent dynamos
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The transition to magnetic-field self-generation in a turbulent, electrically conducting fluid is shown to
exhibit intermittent bursting characterized by distinct scaling laws. This behavior is predicted on the basis of
prior analysis of a type of bifurcatiofcalled ablowout bifurcation occurring in chaotic systems with an
invariant phase space submanifold. The predicted scalings are shown to be consistent with numerical solutions
of the governing magnetohydrodynamic equations, and implications for recently implemented experimental
programs are discussed.
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Active and ubiquitous large scale magnetic fields exist incalled on-off intermittency7-11]. It is this type of intermit-
stars and planetd]. It is generally thought that these fields tency that we find in our MHD computations.
are generated by magnetohydrodynaghi¢tiD) dynamo ac- Our numerical solutions of the nondimensionalized in-
tion induced by the convection driven flow of an electrically compressible Y -v=0) MHD equations,
conducting fluid(liquid metal or plasmawithin these ob-
jects[1-3]. Several groups have initiated experimental pro-  gv/dt+v-Vv=—Vp+(VXB)XB+R V2v+F, (1)
grams to produce a laboratory-scale MHD dynafgb].
Such experiments have the potential of ultimately allowing
laboratory investigation of the basic dynamics and saturation
mechanisms of naturally occurring planetary and stellar dy- o . . . )
namos. In such experiments, as the forcing of the flow i€MPloy periodic boundary conditions ir,f/,z) with period-
increased, it is to be expected that there will be a transitiofCity length 2. The external stirring force i&(x) =[(sinz
from a situation where initial magnetic-field perturbations TCOSY)Xo+ (Sinx+cosz)yy+ (siny+cosx)zp]. This ABC
decay to zero to a situation where magnetic fields are selfforcing has often been used to study aperiodic flows in three
generated by the flow. The fundamental question, which wélimensiong12,13. The system, Eq41) and(2), is solved
address in this paper, is “What is the likely character of thisusing a pseudospectral code in whiclandB are expanded
transition?” In considering this question it is important to in Fourier modes, exi-x), wherek, , , are integers. These
note that the magnetic Prandtl numigeatio of viscosity to ~ €xpansions are truncated [&, , ,|<K. We investigate the
magnetic diffusivity is typically very small(e.g., of the or- ~ solutions of(1) and(2) varying the magnetic Reynolds num-
der of 10°° for liquid sodium. This has the consequence ber Ry, keeping the fluid Reynolds numbé fixed atR
that, in unconstrained geometrig4,5], the fluid flow be- =6.3. We find that the transition to dynamo action occurs as
comes turbulent well before the flow forcing is large enoughRm increases through a critical valuR,=Rmy=7.9. For
for magnetic-field self-generation to occur. In this paper weRm~ 7.9 our tests indicate th#t=6 gives converged results
present analytical evidence and numerical MHD computain the sense that increasiigpast 6 does not lead to quan-
tions showing that the essentially random dynamics of thditative change in statistical behavior. We also find that even
turbulent fluid flow is likely to lead to extremely intermittent at K=1 [which does not represent a quantitatively faithful
bursting of the magnetic activity just after the transition tosolution to Eqs(1) and(2)] the correct qualitative behavior
dynamo action. Furthermore, we show that this burstingand scalings observed Kt=6 still apply.
should obey definite scaling laws near transition, and we Figure 1a) shows a plot of|B| =[ [|B(x,t)|?d*x]*? ver-
propose that these scalings may be measurable in future ests t from computations of Egs(l) and (2) with (R,
periments. Beyond the specific interest for magnetic-field— Ryo)/Rmc=0.010. We see that there are short intermittent
self-generation, our paper also provides an interesting physbursts of magnetic activity separated by relatively long ep-
cal context for the occurrence of a blowout bifurcati@, ochs wherel|B|| is extremely small. Furthermore, viewing
which is a type of bifurcation recently studied in connectionsimilar plots atR,, still closer toR,,., we note that the rate
with chaotic dynamical systems in which chaos exists on af bursting is smaller closer to the transition. In addition,
invariant submanifold in the state space of the system. Blowalthough the bursts are rarer for smalRy— R,,.>0, there
out bifurcations can be nonhysteretgupercritical or hys-  is no noticeable difference in the burst amplitudes. The basic
teretic (subcritica). In the nonhysteretic case they are char-picture is that, as the transition is approach&d,— Ry
acterized by a form of intermittent bursting that has been—0", the average interburst time approaches infinity, but
the typical burst amplitude remains virtually unchanged. As
Rn— Rmc becomes larger, bursts become more and more fre-
* Also with the Department of Electrical and Computer Engineer-quent, eventually merging to yield a nonbursting, but cha-
ing. otic, time variation of|B]|.

dBlot+v-VB=B-Vv+R,'V2B, ()
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1 ] For a randomly chosen value a@f with fixed = and fixed
6B(x,0), the finite time growth raté, (also called a finite
0.5 ] time Lyapunov exponertl4]) is a random variable. Figure 2
ol JL bk . shows a histogram approximation R(h,), the probability
0 62 04 06 08 X1041 distribution function forh_, obtained from our kinematic
t dynamo computations witr=32. A qualitatively similar
FIG. 1. (a) ||B|| versust from our MHD computations atR,,  Plot has been (_)btalned in I|qq|d me_tal dyn_amo experiments
~Rmd/Rmc=0.010. (b) ||B|| versust for (Ry—Rmd/Rmc= [5] (although, since the experiment is relatively far from the
—0.015 and an applied field of 261074 in the x direction. transition to self-field generation, all the measuredralues

o ] ) are negative From the theory of blowout bifurcations the
For Ry<Rmc, an initial smallB-field perturbation even-  eyistence of spread iR(h,) determines the character of the
tually decays|B[—0 ast—o. Near Ryn—Rmc=0", how- g rcation. Since this is present both in our simulation at
ever, the approach B[ =0 can be very nonuniform inthat 63 and in the experiment witR~ 10/, we expect simi-

several large bursts may sometimes appear be#or® is |5 qalitative transition behavior of the magnetic field in
approached. This has the consequence that, if a small COlih case$15]

stant external field is applied, sustained bursting occurs near : - . L
o 1o 2 Assuming ergodicity of the chaotic velocity field evolu-
transition even foRy=Ryc. This is shown in Fig. () for tion, there is a well-defined infinite-time growth rate

(R~ Rmd/Rppe 0.015 and an applied felBo=Bo%o,  \yhich ish. in the limit 7, where the limiting valué is

Bo=1.6x10 * The issue of the effect of a small applie h ‘ I val 7 and al Il choi £ th
magnetic field is of particular importance for experimentst € same for all values of an almost all ¢ oices o the
pitial perturbationéB(x,0) [14]. For larger, the width of

due to the presence of the Earth’s magnetic field and othd (P
stray fields in laboratory settings. the distributionP(h;) becomes narrowdt4,16, approach-

To understand the nature of the bursting process we not@d a delta function ah as 7—,
that near transition for most times the magnetic field is small.
Therefore, we investigate the behavior of Ed3.and(2) for ((h,—(h,))?)~2D/r. (4)
B small. Note thaB=0 is consistent with Eq9.1) and (2),
and simply yields the usual magnetic-field-free Navier-The quantityD in Eq. (4) plays an important role in the
Stokes equations with the given forciR@x), boundary con- theoretical results to be discussed subsequently. We nu-
ditions, and fluid Reynolds number. We find that themerically estimateD as the slope of a plot of (1/
magnetic-field-free solution is chaotic; i.e,at any fixed 2)7%((h,—(h,))?) versusr. For finite larger we obtain an
point in space varies chaotically in time. The problem linear-accurate numerical estimate bfby averagingh, over dif-
ized abouB=0 is called the kinematic dynamo probld@]  ferent runs with different initial conditions arfl values. A
and consists of investigating the stability of our basic tem-plot of the estimated value df versusR,, from our kine-
porally chaotic magnetic-field-free flow to infinitesimal mag- matic solutions of Eqs(l) and (2) gives the critical value
netic perturbationsgB(x,t). Note that the Lorentz force in R, as that value oR,, at whichh passes fronih<0 (non-
Eq. (1), being quadratic irB, does not contribute in linear dynamg for R, <R to h>0 (dynamo for R,;>R,..
order, and thus$v=0. Becauses varies chaotically in time, We now wish to quantitatively examine the scaling of
the temporal behavior dfsB| does not approach an expo- statistical measures characterizing bursting time series such
nential. Rather, the instantaneous growth or damping oés those shown in Fig. 1. To do this we appeal to results
| 8B varies in an erratic manner in time. We can define apreviously derived for nonhysteretic blowout bifurcations
finite time growth rate of| 5B|| for the time intervalT to T [6,8—11 and the accompanying “on-off intermittency.” In a
+7 blowout bifurcation[6] one considers a dynamical system
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_ FIG. 4.(||B||) versus Ry—Rmd/Rmc from our numerical com-
_FIG. 3. Dots showN( ) _versusﬁ from our numerical compu-  putations of Egs(1) and(2) using truncation ak=1 (K=6 for
tations of Eqs(1) and (2) with (R,—Rpd/Rm=0.010. The solid  Figs. 1-3. We useK = 1 for this plot because it requires many long

offset line has the theoretical slope 6fL/2. The extent of this line  runs, and our computer resources are not sufficient for producing
(1073<$<107Y) indicates the expected scaling rang@t{) "'  such a plot usingK=6.
< 6<D/(h%,).

with an invariant hypersurface of lower dimension than that {IBll>~Rm—Rme> (5
of the full phase space of the system. Here by invariant we
mean that if the state of the system is initially placed on the

hypersurface, then the subsequent orbit remains on the hy- :
’ L S - — >0. dB
persurface. Furthermore, it is assumed that initial condmon}s{Or small R~ Rnd/Rmc>0. Since the character ¢fg]

on the hypersurface are attracted to chaotic motion within th(\—.(erSlJSt is that of bursts up t9B/max W'.th ”B”ma" ess_entl_a lly
hypersurface. The blowout bifurcation refers to the loss offonstant folRy, close toRy, the scaling in Eq(5) implies
stability of the chaotic motion in the invariant hypersurfacethat the mean burst frequency becomes smaller and smaller,
to perturbations transverse to the hypersurface. For our dygpproaching zero aRf,— Ry —0".

namo problem, the state of the system at tinie given by We have also tested various other predicted scalings for
v(x,t) andB(x,t). The situatiorB=0 represents an invariant dynamo onset, and our numerical results are consistent with
hypersurface in the fub—B phase space, and, for the con- all of them[17]. They include power-law scaling ranges for
di;ior!s of interest to us, motion on this hypersurface is chathe frequency @) power spectrum of|B(t)|| (~w *?)

ofic; i.e.,v(x,t), from the magnetic-field-free Navier-Stokes [g 10}, the interburst time4&=t;,—t;) probability distribu-
equations, varies irregularly in time. Thus the onset of Magjon function (~A~3?) [11], and the probability distribution
netic dynamo action is a blowout bifurcation, and previousg o ion of |B| for |IB]|<|Blnax (~|BI~?, y=h/D—1).

results for that bifurcation should be applicable. We test this Bursting occurs also in the case wheRg<R,, pro-

below. . L . .
We consider the case where>TR, — R.d/R,,>0. To V|de(_j a small field |s_appl|ed to the system; see Figp).1
begin the discussion of the first scaling result, we introduce écallng laws are predicted for this ga[ﬂ@,l]],_and we have
shown that they hold for our numerical solutions for E(s.

thresholdB, by settingB,, = p||B||max, Where| Bl ax is the
maximum \’/calue of|B|| ovgr the Ienr;zxth of a Iongr.n;?(, many and(2) [17]. As an example, one can pIN(5) versuss for

burs) computational time series, and(p <1 is some order SUch a case. Again, as in the cd¥g> Ry, the fractal di-
of one fraction.(The choice of the threshold is somewhat mensiond=1/2 is expected with the difference that now the
arbitrary, but the results are insensitive to this choisde  range ofs in which N(8)~ 5" applies is limited by the
define the burst times; as the instants whefiB|=B,, Sizé Bo_of the small applied field[10], (Dt,) *<&
d||B||/dt>0. Imagine that we obtain burst times for a long <(In nB3)/(Dt,).
computational run, &t<t, . We then normalize these times  In experiments, small external fields will be present. Thus
to the length of the runy;=t;/t, , so thaty; is in the inter- ~ there might be concern as to how to deduce a parameter
val (0,1). The claim is that, in the double lintif — fol-  transition value(e.g., ourR,,) from data. Scalings such as
lowed byR,,—R,—0", the sef{u;} approaches a fractal of that shown in Fig. 4 and Eg5) can be useful in this regard.
dimensiond=1/2. In particular, the numbeN(5) of 6 In particular, in the absence of a stray fig|(B|)=0 for
length intervals needed to cover the ¢ef} scales a$10] R <R, and(||B||)=k(Ry—Rma for Ry>Rme, Wherek is
N(8)~ 642 for (Dt,) *<s&<D/(h’,). Figure 3 shows g constant, while, with stray fields, the transition(B||) to
that this prediction is well satisfied by our MHD computa- ,grq asR,,— R decreases through zero is rounded. Never-
tions.[Here B, is given by the horizontal line in Fig.(@).] theless, aR,, increases, the behavior df/B|) with Ry,

As a test of the second scaling result, Fig. 4 shows a plo%hould approach the predicted approximate linearitf] B&)

of the time average ofB| (denoted(||B|})) versus Rp becomes sufficiently large compared to the stray field. This
—Rmo. This plot yields results consistent with the expected ylarg P y '

linear dependenci9]
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linear portion of the curve can then be extrapolated to zermther scaling phenomena that are associated with a blowout
(IB]l) to estimate the critical value of the transition param-bifurcation[16] and these would be expected to apply to a
eter. hysteretic dynamo transition.

Finally, we note that all of our discussion has been in the , ,
context of nonhysteretitsupercritical blowout bifurcations. This work was supported by the Office of Naval Research

This is because our MHD computations yield this type of(Physics, and by the NSHContract Nos. EAR-9796295,
bifurcation. It is possible, however, that different forcing, EAR-9903958, EAR-9903162, and DMR-9896037We
boundary conditions, or geometry could yield a hystereticﬂ_‘a”k Parvez Guzdar and Nicholas Peffley for useful discus-
(subcritica) blowout bifurcation. In such a case there areSIOns.
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