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Blowout bifurcations and the onset of magnetic activity in turbulent dynamos
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The transition to magnetic-field self-generation in a turbulent, electrically conducting fluid is shown to
exhibit intermittent bursting characterized by distinct scaling laws. This behavior is predicted on the basis of
prior analysis of a type of bifurcation~called ablowout bifurcation! occurring in chaotic systems with an
invariant phase space submanifold. The predicted scalings are shown to be consistent with numerical solutions
of the governing magnetohydrodynamic equations, and implications for recently implemented experimental
programs are discussed.
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Active and ubiquitous large scale magnetic fields exis
stars and planets@1#. It is generally thought that these field
are generated by magnetohydrodynamic~MHD! dynamo ac-
tion induced by the convection driven flow of an electrica
conducting fluid~liquid metal or plasma! within these ob-
jects @1–3#. Several groups have initiated experimental p
grams to produce a laboratory-scale MHD dynamo@4,5#.
Such experiments have the potential of ultimately allow
laboratory investigation of the basic dynamics and satura
mechanisms of naturally occurring planetary and stellar
namos. In such experiments, as the forcing of the flow
increased, it is to be expected that there will be a transi
from a situation where initial magnetic-field perturbatio
decay to zero to a situation where magnetic fields are s
generated by the flow. The fundamental question, which
address in this paper, is ‘‘What is the likely character of t
transition?’’ In considering this question it is important
note that the magnetic Prandtl number~ratio of viscosity to
magnetic diffusivity! is typically very small~e.g., of the or-
der of 1025 for liquid sodium!. This has the consequenc
that, in unconstrained geometries@4,5#, the fluid flow be-
comes turbulent well before the flow forcing is large enou
for magnetic-field self-generation to occur. In this paper
present analytical evidence and numerical MHD compu
tions showing that the essentially random dynamics of
turbulent fluid flow is likely to lead to extremely intermitten
bursting of the magnetic activity just after the transition
dynamo action. Furthermore, we show that this burst
should obey definite scaling laws near transition, and
propose that these scalings may be measurable in future
periments. Beyond the specific interest for magnetic-fi
self-generation, our paper also provides an interesting ph
cal context for the occurrence of a blowout bifurcation@6#,
which is a type of bifurcation recently studied in connecti
with chaotic dynamical systems in which chaos exists on
invariant submanifold in the state space of the system. Bl
out bifurcations can be nonhysteretic~supercritical! or hys-
teretic ~subcritical!. In the nonhysteretic case they are ch
acterized by a form of intermittent bursting that has be
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called on-off intermittency@7–11#. It is this type of intermit-
tency that we find in our MHD computations.

Our numerical solutions of the nondimensionalized
compressible (“•v50) MHD equations,

]v/]t1v•“v52“p1~“3B!3B1R21
“

2v1F, ~1!

]B/]t1v•“B5B•“v1Rm
21

“

2B, ~2!

employ periodic boundary conditions in (x,y,z) with period-
icity length 2p. The external stirring force isF(x)5@(sinz
1cosy)x01(sinx1cosz)y01(siny1cosx)z0#. This ABC
forcing has often been used to study aperiodic flows in th
dimensions@12,13#. The system, Eqs.~1! and ~2!, is solved
using a pseudospectral code in whichv andB are expanded
in Fourier modes, exp(ik•x), wherekx,y,z are integers. These
expansions are truncated atukx,y,zu<K. We investigate the
solutions of~1! and~2! varying the magnetic Reynolds num
ber Rm , keeping the fluid Reynolds numberR fixed at R
56.3. We find that the transition to dynamo action occurs
Rm increases through a critical valueRm5Rmc57.9. For
Rm;7.9 our tests indicate thatK56 gives converged result
in the sense that increasingK past 6 does not lead to quan
titative change in statistical behavior. We also find that ev
at K51 @which does not represent a quantitatively faithf
solution to Eqs.~1! and ~2!# the correct qualitative behavio
and scalings observed atK56 still apply.

Figure 1~a! shows a plot ofiBi[@* uB(x,t)u2d3x#1/2 ver-
sus t from computations of Eqs.~1! and ~2! with (Rm
2Rmc)/Rmc50.010. We see that there are short intermitte
bursts of magnetic activity separated by relatively long e
ochs whereiBi is extremely small. Furthermore, viewin
similar plots atRm still closer toRmc , we note that the rate
of bursting is smaller closer to the transition. In additio
although the bursts are rarer for smallerRm2Rmc.0, there
is no noticeable difference in the burst amplitudes. The ba
picture is that, as the transition is approached,Rm2Rmc
→01, the average interburst time approaches infinity,
the typical burst amplitude remains virtually unchanged.
Rm2Rmc becomes larger, bursts become more and more
quent, eventually merging to yield a nonbursting, but ch
otic, time variation ofiBi .

-
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For Rm,Rmc , an initial smallB-field perturbation even-
tually decaysiBi→0 as t→`. Near Rm2Rmc502, how-
ever, the approach toiBi50 can be very nonuniform in tha
several large bursts may sometimes appear beforeB50 is
approached. This has the consequence that, if a small
stant external field is applied, sustained bursting occurs n
transition even forRm,Rmc . This is shown in Fig. 1~b! for
(Rm2Rmc)/Rmc520.015 and an applied fieldB05B0x0 ,
B051.631024. The issue of the effect of a small applie
magnetic field is of particular importance for experimen
due to the presence of the Earth’s magnetic field and o
stray fields in laboratory settings.

To understand the nature of the bursting process we
that near transition for most times the magnetic field is sm
Therefore, we investigate the behavior of Eqs.~1! and~2! for
B small. Note thatB[0 is consistent with Eqs.~1! and ~2!,
and simply yields the usual magnetic-field-free Navi
Stokes equations with the given forcingF(x), boundary con-
ditions, and fluid Reynolds number. We find that t
magnetic-field-free solution is chaotic; i.e.,v at any fixed
point in space varies chaotically in time. The problem line
ized aboutB50 is called the kinematic dynamo problem@3#
and consists of investigating the stability of our basic te
porally chaotic magnetic-field-free flow to infinitesimal ma
netic perturbations,dB(x,t). Note that the Lorentz force in
Eq. ~1!, being quadratic inB, does not contribute in linea
order, and thusdv50. Becausev varies chaotically in time,
the temporal behavior ofidBi does not approach an expo
nential. Rather, the instantaneous growth or damping
idBi varies in an erratic manner in time. We can define
finite time growth rate ofidBi for the time intervalT to T
1t

FIG. 1. ~a! uuBuu versust from our MHD computations at (Rm

2Rmc)/Rmc50.010. ~b! uuBuu versus t for (Rm2Rmc)/Rmc5
20.015 and an applied field of 1.631024 in the x direction.
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ht5t21 log@ idB~x,T1t!i /idB~x,T!i #. ~3!

For a randomly chosen value ofT, with fixed t and fixed
dB(x,0), the finite time growth rateht ~also called a finite
time Lyapunov exponent@14#! is a random variable. Figure 2
shows a histogram approximation toP(ht), the probability
distribution function forht , obtained from our kinematic
dynamo computations witht532. A qualitatively similar
plot has been obtained in liquid metal dynamo experime
@5# ~although, since the experiment is relatively far from t
transition to self-field generation, all the measuredht values
are negative!. From the theory of blowout bifurcations th
existence of spread inP(ht) determines the character of th
bifurcation. Since this is present both in our simulation
R;6.3 and in the experiment withR;107, we expect simi-
lar qualitative transition behavior of the magnetic field
both cases@15#.

Assuming ergodicity of the chaotic velocity field evolu
tion, there is a well-defined infinite-time growth rateh,
which is ht in the limit t→`, where the limiting valueh is
the same for all values ofT and almost all choices of the
initial perturbationdB(x,0) @14#. For larget, the width of
the distributionP(ht) becomes narrower@14,16#, approach-
ing a delta function ath ast→`,

^~ht2^ht& !2&;2D/t. ~4!

The quantityD in Eq. ~4! plays an important role in the
theoretical results to be discussed subsequently. We
merically estimate D as the slope of a plot of (1
2)t2^(ht2^ht&)

2& versust. For finite larget we obtain an
accurate numerical estimate ofh by averaginght over dif-
ferent runs with different initial conditions andT values. A
plot of the estimated value ofh versusRm from our kine-
matic solutions of Eqs.~1! and ~2! gives the critical value
Rmc as that value ofRm at whichh passes fromh,0 ~non-
dynamo! for Rm,Rmc to h.0 ~dynamo! for Rm.Rmc .

We now wish to quantitatively examine the scaling
statistical measures characterizing bursting time series s
as those shown in Fig. 1. To do this we appeal to res
previously derived for nonhysteretic blowout bifurcatio
@6,8–11# and the accompanying ‘‘on-off intermittency.’’ In a
blowout bifurcation@6# one considers a dynamical syste

FIG. 2. P(ht) versusht from our numerical computations with
t532 and (Rm2Rmc)/Rmc50.010.
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BLOWOUT BIFURCATIONS AND THE ONSET OF . . . PHYSICAL REVIEW E 63 066211
with an invariant hypersurface of lower dimension than t
of the full phase space of the system. Here by invariant
mean that if the state of the system is initially placed on
hypersurface, then the subsequent orbit remains on the
persurface. Furthermore, it is assumed that initial conditi
on the hypersurface are attracted to chaotic motion within
hypersurface. The blowout bifurcation refers to the loss
stability of the chaotic motion in the invariant hypersurfa
to perturbations transverse to the hypersurface. For our
namo problem, the state of the system at timet is given by
v(x,t) andB(x,t). The situationB[0 represents an invarian
hypersurface in the fullv2B phase space, and, for the co
ditions of interest to us, motion on this hypersurface is c
otic; i.e., v(x,t), from the magnetic-field-free Navier-Stoke
equations, varies irregularly in time. Thus the onset of m
netic dynamo action is a blowout bifurcation, and previo
results for that bifurcation should be applicable. We test t
below.

We consider the case where 1@(Rm2Rmc)/Rmc.0. To
begin the discussion of the first scaling result, we introduc
thresholdB* by settingB* 5riBimax, whereiBimax is the
maximum value ofiBi over the length of a long~i.e., many
burst! computational time series, and 0,r,1 is some order
of one fraction.~The choice of the threshold is somewh
arbitrary, but the results are insensitive to this choice.! We
define the burst timest j as the instants wheniBi5B* ,
diBi /dt.0. Imagine that we obtain burst times for a lon
computational run, 0<t<t* . We then normalize these time
to the length of the run,uj5t j /t* , so thatuj is in the inter-
val (0,1). The claim is that, in the double limitt* →` fol-
lowed byRm2Rmc→01, the set$uj% approaches a fractal o
dimension d51/2. In particular, the numberN(d) of d
length intervals needed to cover the set$uj% scales as@10#
N(d);d21/2, for (Dt* )21!d!D/(h2t* ). Figure 3 shows
that this prediction is well satisfied by our MHD comput
tions. @HereB* is given by the horizontal line in Fig. 1~a!.#

As a test of the second scaling result, Fig. 4 shows a
of the time average ofiBi ~denoted^iBi&) versus (Rm
2Rmc). This plot yields results consistent with the expect
linear dependence@9#

FIG. 3. Dots showN(d) versusd from our numerical compu-
tations of Eqs.~1! and ~2! with (Rm2Rmc)/Rmc50.010. The solid
offset line has the theoretical slope of21/2. The extent of this line
(1023,d,1021) indicates the expected scaling range (Dt* )21

!d!D/(h2t* ).
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^iBi&;Rm2Rmc , ~5!

for small (Rm2Rmc)/Rmc.0. Since the character ofiBi
versust is that of bursts up toiBimax with iBimax essentially
constant forRm close toRmc , the scaling in Eq.~5! implies
that the mean burst frequency becomes smaller and sma
approaching zero as (Rm2Rmc)→01.

We have also tested various other predicted scalings
dynamo onset, and our numerical results are consistent
all of them @17#. They include power-law scaling ranges fo
the frequency (v) power spectrum ofiB(t)i (;v21/2)
@8,10#, the interburst time (D5t j 112t j ) probability distribu-
tion function (;D23/2) @11#, and the probability distribution
function of iBi for iBi!iBimax (;iBi2g, g5h/D21).

Bursting occurs also in the case whereRm,Rmc , pro-
vided a small field is applied to the system; see Fig. 1~b!.
Scaling laws are predicted for this case@10,11#, and we have
shown that they hold for our numerical solutions for Eqs.~1!
and~2! @17#. As an example, one can plotN(d) versusd for
such a case. Again, as in the caseRm.Rmc , the fractal di-
mensiond51/2 is expected with the difference that now th
range ofd in which N(d);d21/2 applies is limited by the
size B0 of the small applied field@10#, (Dt* )21!d
!(ln nB0

2)/(Dt* ).
In experiments, small external fields will be present. Th

there might be concern as to how to deduce a param
transition value~e.g., ourRmc) from data. Scalings such a
that shown in Fig. 4 and Eq.~5! can be useful in this regard
In particular, in the absence of a stray field^iBi&50 for
Rm,Rmc and^iBi&.k(Rm2Rmc) for Rm.Rmc , wherek is
a constant, while, with stray fields, the transition of^iBi& to
zero asRm2Rmc decreases through zero is rounded. Nev
theless, asRm increases, the behavior of^iBi& with Rm

should approach the predicted approximate linearity as^iBi&
becomes sufficiently large compared to the stray field. T

FIG. 4. ^uuBuu& versus (Rm2Rmc)/Rmc from our numerical com-
putations of Eqs.~1! and ~2! using truncation atK51 (K56 for
Figs. 1–3!. We useK51 for this plot because it requires many lon
runs, and our computer resources are not sufficient for produ
such a plot usingK56.
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linear portion of the curve can then be extrapolated to z
^iBi& to estimate the critical value of the transition para
eter.

Finally, we note that all of our discussion has been in
context of nonhysteretic~supercritical! blowout bifurcations.
This is because our MHD computations yield this type
bifurcation. It is possible, however, that different forcin
boundary conditions, or geometry could yield a hystere
~subcritical! blowout bifurcation. In such a case there a
06621
o
-

e

f

c

other scaling phenomena that are associated with a blow
bifurcation @16# and these would be expected to apply to
hysteretic dynamo transition.
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