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displacement regardless of the direction, the lattice at this location is
thus annealed substantially, as if the effective Lr is reduced to
Leff

r < LrIdc=Iac. Thus, at very small biases, the disordered phase is
present only within xad

d from the edges, as in the absence of a bias,
where the disordered vortices leave and re-penetrate every cycle.
Vortices that drift deeper into the bulk under the in¯uence of Idc are
practically fully annealed because of the very short Leff

r . As a result,
the initial decrease of Rac up to Idc < 2 mA (see Fig. 4a) is relatively
small. The corresponding Jac(x) in Fig. 4b at Idc � 1:7 mA shows
narrow contaminated regions near the edges, very similar to the
zero-bias case in Fig. 2. However, as Idc is increased, Leff

r grows and
the bulk of the sample becomes contaminated by the penetrating
disordered vortex phase, leading to a marked drop of Rac. In this
situation, Jac(x) at Idc � 5:7 mA shows a wide region of disordered
phase at the left edge. When Idc is inverted to -5.7 mA, a similar
situation is observed, but now the vorticesÐand hence the dis-
ordered phaseÐpenetrate from the right edge, as expected.

The revealed mechanism readily explains a wide range of addi-
tional reported phenomena. (1) The history of the previously
applied current is encoded in the spatial pro®le of the lattice
disorder, which is preserved after the current is switched off
owing to negligible thermal relaxation. On reapplying the current,
the vortex system will display a memory of all the parameters of the
previously applied current, including its direction, duration, ampli-
tude and frequency, as observed experimentally13,14. (2) Application
of a current step I , Idc

c to a sample in the ordered vortex phase
results in a transient response which decays to zero, as the dis-
ordered phase is able to penetrate only a limited distance. The
resulting new Ic of the sample is given by the condition that Ic � I, as
derived by fast transport measurements14,15. Such transient
phenomena would also display characteristic times shorter than,
or comparable to, the vortex transit time across the sample, in
agreement with observations13,14. (3) The competition between the
contamination and annealing processes is expected to result in local
instabilities, causing the reported noise enhancement below the
peak effect1,2 (see also Fig. 4a). (4) Related phenomena should be
observed in high-temperature superconductors in the vicinity of the
peak effect associated with the melting transition, or near the second
magnetization peak, consistent with experiments3±6,12,16. (5) In high-
temperature superconductors there is an additional consideration
of thermal activation of vortices over the surface barriers, which
may explain the reported slow voltage oscillations3±6. If the thermal
activation rate is higher than, or comparable to, the driving rate, the
slowly injected lattice will be ordered, in contrast to the disordered
vortex phase injected at higher drives. Thus, at a given applied
current, if the bulk of the sample is in the ordered vortex phase,
much of the current ¯ows on the edges, rapidly injecting a
disordered vortex phase through the surface barrier. Once the
bulk becomes contaminated, the resulting slower vortex motion
again causes injection of an ordered phase. This feedback mechan-
ism can explain the voltage oscillations3,6 in YBa2Cu3O7 and similar
narrow-band noise4,5 in YBa2Cu3O7 and Bi2Sr2CaCu2O8 with char-
acteristic frequencies comparable to the inverse transit time. Last,
we note that the described phenomena should be absent in the
Corbino disk geometry where vortices do not cross the sample
edges. Our studies of NbSe2 in this geometry (Y.P. et al., manuscript
in preparation) con®rm this prediction. M
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Finite-time singularitiesÐlocal divergences in the amplitude or
gradient of a physical observable at a particular timeÐoccur in a
diverse range of physical systems. Examples include singularities
capable of damaging optical ®bres and lasers in nonlinear optical
systems1, and gravitational singularities2 associated with black
holes. In ¯uid systems, the formation of ®nite-time singularities
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cause spray and air-bubble entrainment3, processes which in¯u-
ence air±sea interaction on a global scale4,5. Singularities driven
by surface tension have been studied in the break-up of pendant
drops6±9 and liquid sheets10±12. Here we report a theoretical and
experimental study of the generation of a singularity by inertial
focusing, in which no break-up of the ¯uid surface occurs. Inertial
forces cause a collapse of the surface that leads to jet formation;
our analysis, which includes surface tension effects, predicts that
the surface pro®les should be describable by a single universal
exponent. These theoretical predictions correlate closely with our
experimental measurements of a collapsing surface singularity.
The solution can be generalized to apply to a broad class of
singular phenomena.

In our experiment, surface singularities are produced by the
collapsing depressions of standing waves, a phenomenon ®rst
observed by Longuet-Higgins13. A cylindrical tank, partially ®lled
with a ¯uid, is vertically oscillated with an acceleration of the form

a�t� � Asin�qt�, where A is the acceleration amplitude, and q is the
driving frequency. This forcing, known as Faraday excitation,
generates subharmonic standing waves on the ¯uid surface14.
Below a critical standing wave height hc the ¯uid surface topology
remains smooth and simply connected. Above hc, the collapsing
wave entrains an air bubble beneath the surface and changes its
topology from simply to multiply connected. Thus, the critical
height represents the threshold of the surface topology change. At
this point, where parameter values are just below those values for
which droplet entrainment occurs, the resulting inertial collapse
creates a singularity on the ¯uid surface at which the velocity and
surface curvature diverge. This singularity focuses the kinetic energy
of the ¯uid along the central axis and produces a narrow, high-speed
vertical jet (Fig. 1). Experimentally, we observe the approach to this
singularity; as with many such systems, an ultraviolet cutoff exists
which prevents a full divergence of the physical variables. In this
case, viscous forces15 become important near in time and space to
the singularity and provide one source for this cutoff. In addition,
the Rayleigh instability in the jet causes the formation of a droplet at
the tip and eventually causes the jet to break into droplets.

In order to simplify nearly intractable nonlinear equations, the
¯uid is assumed to be irrotational and incompressible, and the air
above the ¯uid is considered to be of zero density. Near the location
of the event, the surface tension forces, kinetic energy density, and
acceleration are all thought to diverge jointly, and gravity may safely

Figure 1 Surface wave collapses and resulting jets. a, A composite of two photographs

showing the collapse of a surface wave depression and the subsequent upward jet caused

by self-focusing of the kinetic energy associated with a near singularity. The singularities

are produced in a cylindrical tank with an inner diameter of 12.7 cm ®lled to a depth of

6.5 cm with a glycerin±water solution with a viscosity of 1.94 cm2 s-1. A sinusoidal signal

of frequency 7.84 Hz generated by computer controls a servo circuit driving the linear

actuator which holds the tank. Initially, the system is driven at a low amplitude,

2.39 m s-2, which sets up a repeatable periodic standing wave. Once the wave state

settles into a periodic state, the driving amplitude is increased suddenly at a zero crossing

to 3.23 m s-2 (or nearby values to produce different wave states), after which the height of

the standing waves increases with each subsequent period. Once the standing wave is

suf®ciently tall, it produces a deep depression which collapses to a singularity and jet.

Images of the developing singularity and jet are captured with a 2,000 ´ 3,000 pixel

digital camera and a ®ve-¯ash array which are triggered via computer signal and a digital

delay generator. With this system, ®ve exposures separated in time by as little as 250 ms

can be captured on a single image. Here, the ®rst photograph is a four-exposure image

and shows four time steps of the collapse which correspond to 8 ms, 4 ms, 2 ms, and

1 ms before the singularity. The second photograph shows the jet 33 ms after the

singularity. b, A second composite, here at a viscosity of 0.26 cm2 s-1. The driving

frequency and amplitude are 8.00 Hz and 4.64 m s-2, respectively. The conical shape of

the surface at the time of the singularity is shown with a resultant jet. In a, viscous effects

provide an ultraviolet cutoff which smoothes the asymptotic cone.
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Figure 2 Comparison of theoretical and experimental surface pro®les for 0.26 cm2 s-1

glycerin±water solution. a, The surface pro®le of a collapsing depression at ten times

before the singularity: 9 ms, 8 ms, 7 ms, 6 ms, 4 ms, 3 ms, 2.5 ms, 2 ms, 1.5 ms, and

1.25 ms. Curves closer to the central axis occur alter in time. The base of depression

accelerates upward and reaches the origin at the time t0. The standing wave which

produces this depression is subcritical in height, so it collapses to a near singularity. The

surface pro®les are converted from digital images to coordinates and corrected for the

refraction caused by the cylindrical tank. The height of the waves and qualitative

information about the events are determined from images captured by a 250 frames/

second video camera. b, The theoretical form of the surface pro®le, calculated

numerically as described in the text for We � 4;000, is shown as a solid line. The

asymptotic cone angle is v � 608. The points are the ten surface pro®les from a scaled

according to the similarity solution. The pro®les collapse into one self-similar form which

agrees well with theory. Because of a viscous ultraviolet cutoff, overhang begins to

develop in the surface pro®les at late times (,1 ms). This overhang is not present in the

numerical form. c, A log±log plot of Ic, the mean distance from the origin to all points (with

f �u� , 0, where f �u� � h�r ; t ��t 0 2 t �2 2=3 is the scaled height of the ¯uid surface)

along a given pro®le, and (t 0 2 t ) for each of the curves in a and b. The solid line

represents the predicted two-thirds scaling law.



© 2000 Macmillan Magazines Ltd

letters to nature

NATURE | VOL 403 | 27 JANUARY 2000 | www.nature.com 403

be neglected. An important result of these assumptions is that the
physical forcing of the system no longer enters into the local
equations of motion. Hence, the same equations describe the
curvature collapse and singularities in many other systems with
free surfaces, independent of forcing, including spherical and
cylindrical cavitation bubble collapse, droplet impact rebounds
and, by considering the gravity-dominated case, wave impact and
jets on a sheer wall. We show that the inclusion of surface tension
not only expands on previous work6,17, but is also responsible for the
selection of a universal solution describing jet formation in collaps-
ing cavities. The system can be described by three equations, one for
the bulk and two at the air±¯uid interface: the Laplace equation
representing incompressibility, the kinematic equation for the ¯uid
surface, and the Bernoulli equation at the ¯uid surface. These three
equations in cylindrical coordinates are, respectively:

=2f � 0 �1�
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Here f is the velocity potential (v � =f), z is the axial coordinate
(z � h at the free surface), r is the radial distance, j and r are the
surface tension and density of the ¯uid, respectively, and R1 and R2

are the principal radii of curvature of the surface.
There is no formal mathematical framework for attacking such a

system of nonlinear partial differential equations. However, in past
analysis of singularities6,7,18,19, a similarity method has proven an
effective tool. We postulate a power-law scaling in times close to the
singularity:

h�r; t� � �t0 2 t�af �r�t0 2 t�b� �4�

f�r; z; t� � �t0 2 t�gg�r�t0 2 t�b; z�t0 2 t�2 a
�; �5�

in which t0 is the time of the singularity. The variables r and z have
been scaled by the characteristic length and velocity scales l and v,
and t has been scaled by a characteristic time t � l=v. This scaling
yields a single non-dimensional parameter, the Weber number
We � rv2l=j that governs the dynamics of the collapse. Physically,
We is the ratio of the kinetic energy of the ¯uid motion to the surface
energy that contains the ¯uid. We estimate the Weber number based

on the height of the last smooth wave h and the velocity v � hq=2
(where q/2 is the angular frequency of the wave).

For a similarity solution to exist, the time-dependence of all terms
in equations (1)±(3) must be the same. Substituting equations (4)
and (5) and requiring the time-dependence to be identical in each
term, we ®nd that only a single value is allowed for each of the
exponents: a � 2=3, b � 2 2=3, and g � 1=3. These exponents were
also found by Keller and Miksis10 in their analysis of a breaking
liquid sheet and apply to all cases when only surface tension and
inertial forces are dominant. This result differs signi®cantly from
the case in which surface tension is neglected16,17, in which, for given
conditions, a continuous family of exponents is possible with no
well de®ned selection criterion.

We can infer important characteristics of the singularity from the
values of the scaling exponents, including the pro®le of the ¯uid
surface near in time to the singularity. As t0 2 t ! 0, the scaled
radius in the argument of f diverges. Since a � 2 b, the function f
must be linear in its argument for times near the singularity in order
for the height to remain ®nite. Near the singularity, then, the height
of the surface is linear with respect to the radius; that is, h�r; t� ! Cr
and the surface is a cone as t ! t0 (Fig. 1b). Numerical evidence
indicates that only certain values of the cone angle C � cotv (the
angle of the surface off the vertical) are allowed. The system is now
described by three partial differential equations for f and g in the
scaled radius u � r�t0 2 t�2 2=3 and height v � z�t0 2 t�2=3.
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To solve equations (7) and (8) numerically and ®nd a form for the
surface pro®le (Fig. 2b), we write equation (6) as a series of known
solutions to the Laplace equation with unknown coef®cients:

g � c1=2r1=2
s P1=2�cos v� � c 2 1r 2 1

s � c 2 2r 2 2
s P1�cos v� � ¼ �9�

in which rs is the spherical radius from the centre of the collapsing
cone, v is the polar angle, and Pn are Legendre polynomials.
Asymptotic analysis of equation (8) requires the leading-order
behaviour to be r1/2

s . In solving for f(u) numerically, the coef®cients
in the above series and the angle v0 at large radius are assigned
values. This form of g is substituted into equation (2) which is then
integrated to determine f(u). The coef®cients and angle are varied,
and f(u) and g(u,v) are recalculated iteratively until equation (3) is
satis®ed. This numerical form predicts not only the shape of the
collapsing surface in our experiment, but due to the lack of a speci®c
forcing in equations (6)±(8), is a general form which describes any
axisymmetric surface singularity dominated by inertia and surface
tension.

We experimentally observe the approach to the singularity in the
curvature collapse of the surface pro®le of the ¯uid surface. Figure 3
shows three collapsing surface depressions in a 1.94 cm2 s-1 ¯uid in
the tank, one subcritical, one nearly critical, and one beyond the
critical height. The collapse of all three of these surfaces would
produce a ¯uid jet. Figure 3b shows the collapse of the depression
near the critical point which produces a energetic singularity. The
walls of the depression collapse radially inward while the bottom of
the depression accelerates upward toward an origin. At the point of
singularity, the velocities from equation (5) are predicted to diverge.
Figure 4 details this dependence experimentally. If we vary the
forcing such that the last smooth standing wave approaches
the amplitude hcÐthe value above which we observe bubble

Figure 3 Surface depressions produced by surface waves of three different heights in

1.94 cm2 s-1 ¯uid. a, The depression produced by a collapsing wave of subcritical height,

h , hc. The surface topology remains smooth and simply connected. A jet is produced

with a tip velocity of 7 m s-1. b, The depression produced by a standing wave with h < hc.

The walls are nearly vertical, and no bubble is entrained. This state produces a very

narrow jet with a velocity of 30 m s-1. c, The depression produced by a standing wave with

h . hc. A large conical bubble is produced as the topology changes from simply to

multiply connected. The curvature is singular at the point of bubble pinch-off. The bubble

decreases the kinetic energy of this jet, which has a velocity of 6 m s-1. Large bubble

oscillations and concomitant emitted sound account for much of the energy loss. Each of

these photographs was taken at the same time relative to the phase of the forcing.
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entrainment to ®rst occurÐthe velocity peaks sharply, reaching
values higher than 52 m s-1. The entrainment of even very small
bubbles decreases the jet velocity signi®cantly.

We now analyse the surface pro®le of a subcritical collapsing
depressionÐa near singularity. Each curve in Fig. 2a represents the
shape of the surface pro®le at a given time before the singularity. We
scale these data according to the similarity solution, using the
location of the origin to which the pro®les collapse vertically and
the time of the singularity as parameters. Figure 2b shows the result
of this scaling superimposed on the numerical solution. It is clear
that the numerical solution is in good agreement with the observed
surface pro®les, indicating that the analysis captures the behaviour
of the system. The collapse of the experimental data is consistent
with a two-thirds scaling exponent, though for late times, an
ultraviolet cutoff due to viscous effects causes increasing deviation
from the self-similar form. When the ¯uid velocity becomes
suf®ciently large as the singularity is approached, viscous forces
can no longer be neglected, and the above analysis would need to be
extended to include rotation. Experimentally, overhang in the
surface pro®le is seen to develop, suggesting that the ¯uid is not
irrotational. As the ¯uid velocity is increased, the viscous ultraviolet
cutoff also results in systematic rounding of the asymptotic cone.
These viscous effects can be decreased by using a ¯uid with lower
viscosity. However, in low-viscosity ¯uids, small-scale structures are
observed on the standing waves before the collapse. Although we
observe curvature collapse and jets in water (viscosity 0:01 cm2 s 2 1),
parasitic capillary waves and other perturbations complicate these
surface pro®les and make them dif®cult to analyse.

In most previous applications of similarity solutions, the original
partial differential equations reduced to ordinary differential equa-
tions. However, in this work, our system reduces to partial differ-
ential equationsÐa more dif®cult, but tractable, situation9,10. This
method can now be applied to such problems as sheet-like jets
erupting from ¯uid surfaces, as is seen in wave breaking on a cliff20 in
the gravity-dominated case. A power-law scaling for the form of the
¯uid jets produced in our experiments by the surface curvature
collapse is also known21. One challenge remaining is to match the
solution discussed here regarding the collapsing depression before
the singularity with the known behaviour of the jet after the
singularity. In addition, further study of the viscous ultraviolet

cutoff very close in time to the singularity is needed, and it would
also be of interest to investigate the dependence of solutions on the
Weber number. M
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Figure 4 Dependence of jet velocity on surface wave height for 1.94 cm2 s-1 ¯uid. The

velocity of the jet tip depends strongly on the height of the last smooth standing wave

before the singularity. The tip velocity increases rapidly as h ! hc. The bubble formation

(for h . hc) requires energy, and the tip velocity decreases sharply with increasing bubble

size. Near h � hc, jet tip velocities exceeding 52 m s-1 have observed. This velocity

dependence is consistent with the Weber number We of the jet being derived from that of

the last smooth wave. The solid line is the functional form rv 2
z �h 2 hc�=j � We where r

is the ¯uid density, vz is the jet tip velocity, and j is the surface tension. Tip velocities are

found by observing the shadow of the jet tip. A vertical HeNe laser sheet passes

horizontally through the tank through the central axis and shines on two phototransistors

separated by a vertical distance of 2.7 cm. As the jet moves upward through the laser

sheet, the curved droplet tip refracts the light and forms a shadow. Using a digital

oscilloscope, the time delay between the appearance of the shadow on the two

phototransistors is measured, and the velocity of the tip obtained. The high-viscosity ¯uid

simpli®es these measurements by damping out small-scale perturbations on the surface

and creating smooth, vertical jets.


