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Turbulent flows are highly intermittent—for example, they ex-
hibit intense bursts of vorticity and strain. Kolmogorov theory1,2

describes such behaviour in the form of energy cascades from
large to small spatial and temporal scales, where it is dissipated as
heat. But the causes of high intermittency in turbulence, which
show non-gaussian statistics3–5, are not well understood. Such
intermittency can be important, for example, for enhancing
the mixing of chemicals6,7, by producing sharp drops in local

pressure that can induce cavitation (damaging mechanical com-
ponents and biological organisms)8, and by causing intense
vortices in atmospheric flows. Here we present observations of
the three components of velocity and all nine velocity gradients
within a small volume, which allow us to determine simul-
taneously the dissipation (a measure of strain) and enstrophy
(a measure of rotational energy) of a turbulent flow. Combining
the statistics of all measurements and the evolution of individual
bursts, we find that a typical sequence for intense events begins
with rapid strain growth, followed by rising vorticity and a final
sudden decline in stretching. We suggest two mechanisms which
can produce these characteristics, depending whether they are
due to the advection of coherent structures through our observed
volume or caused locally.

The problem of turbulence has been notoriously difficult to
resolve, because it involves the interaction of flow length and
timescales over many orders of magnitude. The intense, localized
events that are characteristic of turbulence can cause difficulty in
numerical simulations, via the generation of small scales and large
local gradients. Simulations have some advantage in that they
provide access to the entire field; alternatively, experiments can
yield long observational records that are computationally imprac-
tical. Turbulence experiments also have limitations. Many measure-
ments have relied on invasive techniques9 that can affect the flow
being studied. Usually, measurements do not capture the full three-
dimensional nature of the flow; instead, they rely on one- or two-
component approximations of velocities and velocity gradients. A
fully three-dimensional (3D), spatially resolved technique is needed
to measure important quantities such as the energy dissipation and
helicity within the flow. Good temporal resolution is also required
to study the rapid development of intense events.

A few recent experiments have captured many of these features.
Tao et al.10,11 used holographic particle image velocimetry (HPIV) to
take elegant 3D snapshots of turbulent channel flow, though the
technique is not time-resolved. Using two very different technol-
ogies, La Porta et al.12 and Mordant et al.13 tracked individual
particles (a lagrangian measurement) in highly turbulent flows. This
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method provides direct access to the velocity and acceleration of the
flow, but cannot yield velocity gradients.

We have designed and implemented a 3D particle image veloci-
metry technique14 that obtains time series of the three components
of velocity and all nine velocity gradients measured within a small
volume. That is, this instrument allows us not only to study the
statistics of intense, intermittent events, but also to observe and
characterize their dynamics. In the following, we describe this
technique and the results from a turbulent flow.

To visualize the 3D velocity field locally, we align three laser sheets
such that each sheet illuminates one face of a small, cubic test
volume, with the three sheets crossing at one vertex of the cube. The
sheets illuminate 1 mm spherical polystyrene fluorescent particles
that track the motion of the fluid. Three high-speed video cameras,
recording at 125 frames per second, focus on the sheets, such that
each camera sees only those particles in its own sheet. The key to
reconstructing the 3D flow from these three slices is that the test
volume be sufficiently small so that the flow within is, to good
approximation, locally linear:

v < bþMx ð1Þ

where M ¼ ›vi=›xj is the matrix of gradients. We use the two-
dimensional velocity vectors from all three faces to estimate b and M
for the whole cube. The dissipation 1 and enstrophy Q can be
calculated at a given time step from the measured gradients: 1¼
nSijðMijþMjiÞ

2=2 and Q¼ SijðMij 2 MjiÞ
2=4¼ q2=2; where q¼

f£ v is the vorticity and n is the kinematic viscosity. In a turbulent
flow, for equation (1) to hold, the test region must be of the order of,
or smaller than, the Kolmogorov length h, the length scale at which
viscosity smooths out the flow. We use three long-distance micro-
scopes to image a small region (of size 1.8h), from a working
distance of 43.3 cm.

Our flow is produced in a transparent cubic container of side
l ¼ 22 cm. Two square grids with a mesh size of lg ¼ 0.85 cm are
rigidly connected to each other with a vertical spacing of 6.0 cm and
are vertically oscillated with a position y ¼ y0 sin ðqgtÞ to drive the
flow. The measurement volume at the centre of the tank is

horizontally and vertically centred between the two grids.
The Reynolds number, which gives the approximate ratio of

inertial to viscous forces in the flow, can be defined in terms of the
tank size and the velocity amplitude of the grid, Re¼ lqgy0=n; we
present data for a flow with Re¼ 48;200 and Rl ¼
v2

x;rms=nkð›xvxÞ
2l1=2

¼ 54: The time average of the dissipation is
1̄¼ 0.0336 cm2 s23, which can be used to estimate the Kolmo-
gorov length scale for this flow, h ¼ (n3/1̄)1/4 ¼ 0.074 cm.

To gather sufficient statistics, 5 £ 106 sets of vectors and matrices
for grid turbulence have been gathered, corresponding to 0.8 tera-
bytes of video data. Video sequences of the flow reveal periods of
unidirectional flow occasionally interrupted by visually striking
vortices and hyperbolic flow patterns. Traces of 1 and Q (Fig. 1)
reflect the intermittent nature of the flow. These distributions are
qualitatively comparable to those observed in numerical simu-
lations15. The probability distributions Pr(1) and Pr(Q) (Fig. 2)
both display long tails with high values more common for Q than 1,
indicating that vorticity is more intermittent than strain. Each
component of the gradient matrix M assumes positive and negative
values and, by continuity, must occasionally pass through zero. A
one-dimensional approximation 1 < 15nð›xuxÞ

2 of these quantities,
as used in some previous experiments3, implies that very low values
of 1 occur with much higher probability than we observe. In reality,
it is unlikely that all nine gradient components simultaneously drop
to zero.

Taken over the entire data set, the measure k1Ql ¼ 1.6991̄Q̄
indicates that these two quantities are not statistically independent.
A scatter plot of 1 versus Q (Fig. 3) highlights the interdependence of
these quantities. In particular, especially high values of 1 coincide
with high values of Q sixteen times more frequently than if they were
independent.

Our observations of the fluctuating gradients permit a statistical
analysis of the interdependencies of the stretching and rotating parts
of the field. It is useful to split the gradient matrix M into symmetric
(representing strain) and antisymmetric (representing rotation)
parts: M ¼ SþA: Note that the dissipation is proportional to the
sum of the squared components of S and that the enstrophy is
proportional to the sum of the squared components of A. We
observe that the time derivatives 1̇ and Q̇ are systematically affected
by the local conditions of 1 (and the three eigenvalues of S, which we
denote as l i) and Q. In particular, the dissipation on average is rising
when the largest eigenvalue of S, l1, is large (see Fig. 4a), and falling
when the enstrophy is large (see Fig. 4b).

The time dependence of the dissipation can be due to several
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mechanisms. Although we will also advance the idea of local
kinematic causes, another explanation invokes coherent structures
being advected into our measurement volume. Because our obser-
vations are probably an admixture of the two phenomena, we will
discuss interpretations relating to both.

Previous observations of vortex tubes with nearby sheets of high
dissipation16 offer one possible explanation to the behaviour seen in
Fig. 1. An advecting velocity correlated with these structures is
consistent with the observed statistics in the following way. Figure
4b shows the dissipation falling as the enstrophy increases. This is
consistent with a dissipation decrease as the centre of a vortex core is
approached, and that the high dissipation sheet precedes but does

not trail the vortex. Figure 4c shows that the front of this preceding
dissipation sheet would typically be compressive in two directions,
while the back would have one compressive direction.

We can learn about gradient fluctuations by studying our data
and by examining the Navier–Stokes equations. If we expand the
velocity field locally as a first-order Taylor series in x, exactly as in
equation (1), and substitute it into the Navier–Stokes equations, we
obtain the following equation for M : _M¼2M2 2 P=r; where P is
the Hessian matrix for the pressure field17. This expansion neglects
several factors, all quadratic in x, including the effect of viscosity and
the effect of advection in convecting gradients into our local region.
This expression retains gradient steepening by the nonlinear term
(M2) and the nonlocal effect of pressure to enforce incompressi-
bility. Note that P is undetermined except by boundary conditions
and incompressibility, TrðM2þPÞ ¼ 0; this is due to the nonlo-
cality of the pressure. Finally, splitting M into symmetric and
antisymmetric parts yields:

_S¼2S2 2 A2 2 P=r ð2Þ

_A¼2SA 2 AS ð3Þ

These form a local basis for the interaction of rotation (A) and strain
(S). Because the matrix A contains only the components of the
vorticity, equation (3) gives _q¼ Sq; indicating how the strains
stretch and amplify vorticity17.

The kinematics of equations (2) and (3) can be related to our
observed statistics and by observations of events such as those
displayed in Fig. 1.

First, the gradients show self-steepening instabilities, causing _1 .
0: These instabilities are probably of the same type that causes the
gradients to grow in the Burger’s equation. The conditional statistic
shown in Fig. 4a substantiates this effect. Second, the presence of
large gradients causes the vorticity to grow ð _Q . 0Þ owing to the
well-known vortex stretching mechanism. Finally, once the vorticity
has grown, it causes the dissipation to fall, that is, Q .. �Q implies
that _1 . 0; as is seen in Fig. 4b and anticipated in equation (2)
(although the effect of the 2A2 term depends in a nontrivial way on
the directions involved).

The events shown in Fig. 1 were chosen for their particularly large
amplitudes of 1, but they show a sequence bearing out these three
features. The gradients (as indicated by 1) first grow, in the absence
of a large vorticity. Once the gradients are large, the vorticity
(through Q) shows a sudden, rapid increase. The peaking of the
enstrophy is then accompanied by the rapid decline of the dissipa-
tion. We see no clear evidence, through conditional statistics, for a
mechanism by which the vortices decline. It may be that slower
viscous forces are required to damp the vortices, because kinematic
mechanisms, as represented in equations (2) and (3), are ineffectual
at damping vorticity.

Using this optical technique, we present these experiments to
directly observe the development, interdependence and interaction
of turbulent strain and vorticity. We have directly quantified
intermittent events in the dissipation and enstrophy and discussed
their relation to advecting structures. Our analysis includes a
characterization of self-steepening and the first statistical evidence
for vortex ‘squelch’ (see Fig. 4) of the dissipation. Our observations
highlight how an understanding of the temporal interactions
between stretching and vorticity is crucial to the science of extreme
events in turbulence. A

Methods
Each image frame was broken into four 108 £ 128 pixel subsections (9.7% overlap). A
two-dimensional cross-correlation is performed between each subsection in subsequent
images, a process which identifies the best two-dimensional pixel shift to particle images
from one frame to the next. A weighted averaging technique is used to identify the cross-
correlation peak to sub-pixel resolution, estimated at 0.25 pixels. A linear least-squares
method fits the calculated velocity vectors and three-vector locations from each camera to
the linear shear model of equation (1) to estimate b and M. Vector validation and
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conditioned on the largest eigenvalue of the strain matrix l 1 being larger than a value l c.

Gradients, represented by l 1, are subject to a self-steepening mechanism, causing the

dissipation to rise. Note that 1¼ 2nSi l
2
i : b, The average of _1 conditional on the

enstrophy Q being larger than a value Q 0. The observations show an unambiguous

decline in the dissipation when rotations are strong. We interpret this as a vortex

‘squelch’, whereby the vortices disrupt by mixing the self-steepening of the straining

motions. c, The average of _1 conditional on the ratio of the two largest eigenvalues of the

strain matrix. Arrows indicate local flow stretching directions. The dissipation, on average,

grows when there are two contracting directions, while for l2=l1 . 0:25 the dissipation,

on average, falls. As the contracting directions are the ones unstable in growth by a

Burger’s mechanism, this may indicate that having two contracting directions enhances

that mechanism.
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bootstrapping18 are used to reduce the effect of spurious vectors caused by too few
particles. The least-squares calculation is constrained to be divergence-free, that is,
TrðMÞ ¼ 0:

Received 11 July; accepted 26 November 2002; doi:10.1038/nature01334.
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The behaviour of liquid crystal (LC) molecules near a surface is of
both fundamental and technological interest: it gives rise to
various surface phase-transition and wetting phenomena1–14,
and surface-induced ordering of the LC molecules is integral to
the operation of LC displays15,16. Here we report the observation
of a pure isotropic–nematic (IN) surface phase transition—
clearly separated from the bulk IN transition—in a nematic LC
on a substrate. Differences in phase behaviour between surface
and bulk are expected1–4, but have hitherto proved difficult to

distinguish, owing in part to the close proximity of their tran-
sition temperatures. We have overcome these difficulties by using
a mixture of nematic LCs: small, surface-induced composition
variations lead to complete separation of the surface and bulk
transitions, which we then study independently as a function of
substrate and applied magnetic field. We find the surface IN
transition to be of first order on surfaces with a weak anchoring
energy and continuous on surfaces with a strong anchoring. We
show that the presence of high magnetic fields does not change
the surface IN transition temperature, whereas the bulk IN
transition temperature increases with field. We attribute this to
the interaction energy between the surface and bulk phases,
which is tuned by magnetic-field-induced order in the surface-
wetting layer.

In a confined geometry, interactions between LC molecules and
the surfaces of the confining walls give rise to different LC behaviour
at the surface and in the bulk. Upon undergoing the IN transition
the delicate balance of intermolecular interactions tends to favour
the LC–surface interaction in the nematic phase, whereas the LC–LC
interaction tends to dominate in the isotropic phase. The new
nematic phase therefore occurs first at the surface, a phenomenon
known as “wetting”1,2,13,14. The IN transition is relatively weak
thermodynamically, so large pre-transitional effects take place
before the transition. The interaction of these pre-ordered LC
molecules with the surface is known as “pre-wetting”2,13,14. In a
magnetic field the diamagnetic LC molecules undergo a torque that
forces them to orient relative to the field direction17. Although at the
level of individual molecules the magnetic field effect is negligibly
small in the isotropic phase, the collective behaviour of the meso-
phase causes the molecular contribution to add up constructively,
resulting in a macroscopic orientation effect (Fig. 1).

A variety of theoretical studies have addressed this wetting
problem either at the general level of surface-related phenomena1,2

or for LCs in particular3,4. Cahn1 introduced a first-order wetting
transition leading to an ordering film of finite thickness in any two-
phase mixture of fluids contacting a third phase at a critical
temperature. Later, Nakanishi and Fisher2 showed that pre-wetting
of a highly ordered film with finite thickness on a surface continues
to wetting via a first-order or continuous wetting transition. This
pre-wetting, where a strongly anchored LC layer forms a uniform
nematic phase adjacent to the substrate and near the isotropic bulk,
has often been discussed for the case of strong surface fields3,4.

Figure 1 A correlated volume of liquid crystal mesogenes under the influence of an

applied magnetic field, H. The field tends to orient the domain as a whole, changing the

director orientation relative to the field, v, leaving unchanged the individual molecules

within the domain, fi.
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