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Lorentz force effects in magneto-turbulence
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Abstract

We experimentally characterize magnetic field fluctuations in a strongly turbulent flow of liquid sodium in the presence
of a large externally applied field. We reach high interaction parameter (up toN = 17) for moderate magnetic Reynolds
number (up toRem = 18), a previously unexplored parameter range for liquid metal flows. As the interaction parameter (i.e.
the ratio of Lorentz to inertial forces) is increased, the system passes through distinct regimes, which we classify. We find
that for certain ranges of the applied magnetic field, particularly at high values, the induced magnetic field exhibits large,
coherent oscillations. Spatial structure in these induced field oscillations suggests the formation of non-axisymmetric vortices
that precess at a fraction of the impeller rotation rate. We also investigate the effect of rough versus smooth boundaries and
relate these results to topographic core–mantle coupling in the Earth.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

There is extensive research indicating that plane-
tary magnetic fields arise from flowing electrically-
conducting fluids. Since the 1960s, many researchers
have found self-generating dynamo solutions of the
governing equations for the magnetic field and fluid
motion(Steenbeck et al., 1966; Moffatt, 1978; Dudley
and James, 1989). More recently, numerical research
has shown dynamo action, including field reversals
and more complicated dynamics, in approximately re-
alistic simulations of the Earth’s core(Glatzmaier and
Roberts, 1995; Kuang and Bloxham, 1997). Dormy
et al. (2000), and Roberts and Glatzmaier (2000),
present excellent reviews. Recently, groups in Riga,
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Latvia (Gailitis et al., 2000, 2001)and Karlsruhe,
Germany(Stieglitz and Müller, 2001)have produced
liquid metal laboratory dynamos, in geometries that
force helical flow using baffling and duct-work. A
logical next step is producing a laboratory dynamo in
a geometry where Lorentz forces can greatly modify
the velocity field. A number of groups including our
own are attempting this(Odier et al., 1998; Beckley
et al., 1998; O’Connell et al., 2001; Peffley et al.,
2000).

Experimentally studying the interaction of magnetic
fields and electrically-conducting flows has the poten-
tial to answer a number of open questions. First is
the effect of turbulence, which experiments are well
suited to study. In the Earth’s core, turbulence most
likely has a significant effect on the Earth’s field, as
best evidenced by the broad magnetic energy spec-
tra at the core–mantle boundary. Satellite data imply
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that the Earth’s field at the core–mantle boundary has
significant contributions at least up to degreel = 12
(Hulot et al., 2002). As the Earth’s mantle filters the
field increasingly with higherl, the Earth’s field may
thus be even more broadband than we are able to infer
from the surface. Evidence that turbulence is signifi-
cant is also found in experiments(Odier et al., 1998;
Peffley et al., 2000).

Other approaches to the dynamo problem may miss
important effects of turbulence. In theoretical studies,
turbulence is either treated using approximations and
parameterizations, e.g. the�- and�-effects, or only
stationary flows are considered. In numerical work,
hyperdiffusivities or an artificially large magnetic
Prandtl number (e.g. setting the ratio of the kinematic
viscosity to the magnetic diffusivity,Prm ≡ ν/η, to or-
der unity—whereasPrm ∼ 10−6 for the Earth’s core
(Dormy et al., 2000)) purposefully limit turbulence. In
the Riga and Karlsruhe experiments, turbulence does
not play a direct role in the magnetic field dynam-
ics. For instance, the Karlsruhe dynamo is two-scale:
while the velocity field is small-scale and turbulent,
the magnetic field is large scale and apparently only
slightly affected by the fluid turbulence.

Furthermore, in the Riga and Karlsruhe experi-
ments the magnetic field reaches equilibrium through
mechanisms that are different than those operating in
planetary core dynamos. In the Karlsruhe experiment,
the equilibrium magnetic energy corresponds simply
to the pressure head in excess of the critical value for
dynamo action. In a less constrained dynamo, on the
other hand, the equilibrium magnetic energy would be
much harder to predict as Lorentz forces would alter
the flow in a more complicated way. A recent paper
by Gailitis et al. (2001)showed evidence of saturation
in the Riga dynamo experiment that appears more
complicated than the saturation in the Karlsruhe ex-
periment. However, the saturated field value was small
(8 G) for moderate magnetic Reynolds number, corre-
sponding to an interaction parameter much less than
one, far from the regime thought present in the Earth.
Although we have not produced a self-generating
dynamo like the experiments in Karlsruhe and Riga,
we are nonetheless closer to the parameter range
where the Earth’s dynamo is thought to operate. For a
more extensive discussion of the relation between dy-
namo theory and experiments see a review byBusse
(2000).

Previous liquid metal experiments attempting to
produce dynamos in unconstrained flows used small
external applied fields(Odier et al., 1998; Peffley
et al., 2000). The applied fields there were used to
probe the system in two ways. In one, induced fields
were measured, which result from twisting and shear-
ing of a constant field by the conducting fluid. In the
other, the decay of a pulsed applied field probed how
close the system was to self-generation. Small fields
were desirable for these purposes so that Lorentz
forces did not alter the flow.

In this study, the applied fields are purposefully
large enough to alter the flow. In other words, the in-
teraction parameter, the ratio of the Lorentz to iner-
tial forces, is made greater than unity. The interaction
parameter isN = B2L/ρµ0ηU, whereB is the mag-
netic field,U and L the characteristic velocity and
length scales,ρ the density, andµ0 the magnetic per-
meability. Near unity interaction parameter should be
an interesting regime, as a competition exists between
two dominant forces. Although the interaction param-
eter in the Earth is much greater than one, there is a
length scale within the outer core whereN is compa-
rable to our experiments. One place where structures
at these length scales might be especially important
is in the outer core boundary layers. The boundary
layers may play a crucial role in the global state of
the outer core, and specifically in the magnetic field
saturation.

In addition to a force balance, turbulence, or its
suppression by the magnetic field, could affect sat-
uration of the magnetic field. For instance, in the
Earth’s core small-scale currents (due to small-scale
turbulent velocity fluctuations) could contribute to
Joule heat production, even if they do not contribute
directly to the observable field. Joule heat production,
which obviously cannot exceed the power source
driving the dynamo, places limitations on the inten-
sity of magnetic fields in the core.Brito et al. (1996)
studied Joule heating in turbulent gallium flows for a
range of applied fields and found that the fields had a
significant effect. As the applied field was increased
for a fixed rotation rate, Joule heating increased and
then decreased, similar to some of our observations.
However, their magnetic Reynolds number and inter-
action parameter (as defined here) were less than one.
Although we do not directly measure Joule heating
in our experiments, the sudden change in dynamics
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we observe at large interaction parameter could make
extrapolating from Brito’s study to higher interaction
parameter problematic. It should be noted, however,
that our applied field direction is parallel to the rota-
tion axis, whereas Brito’s was transverse.

Many other experimental studies of magnetic fields
on electrically-conducting flows (Rayleigh–Benard
convection, duct flows, magnetically-driven flows,
flow around obstacles, etc.) have been performed
(Moreau, 1990; Brito et al., 1995). However, to our
knowledge, no experiments have been performed for
highN, Rem = UL/η > 1.

Lastly, our experiment relates to a paper by
Hollerbach and Skinner (2001). They studied, numer-
ically, spherical Couette flow with large applied fields
parallel to the axis of rotation. The applied fields
induced instabilities in their system that resemble in
many ways the dynamics in our experiment. They
can only reach Reynolds numbersRe= Rem/Prm ∼
O(103), however, and the system changes significantly
past the critical value for the instabilities. Thus our
experiment, with its range of much larger Reynolds
numbersRe∼ O(106) and similar geometry, signifi-
cantly extends their result.

In this paper, we present magnetic field and torque
measurements taken over a range of interaction pa-
rameter. These data exhibit phenomena that depend
mainly on the interaction parameter (and weakly on
Rem)—suppression of turbulence, regular oscillations
in the induced magnetic field, and spatial correlations
with complex structure. We also find that angular
momentum transfer between the fluid and the spher-
ical vessel depends in rather unexpected ways on the
applied field and topography of the vessel. We demon-
strate that the interaction parameter is the relevant pa-
rameter describing these phenomena, and we classify
the major regimes. Finally, we make an interpretation
of the flow dynamics and discuss implications for the
dynamics in the Earth’s core.

2. The experiment

The liquid sodium is contained in a 31.2 cm hollow
sphere of 304 (nonmagnetic) stainless steel. The flow
is driven by two 12.7 cm diameter titanium impellers
on 2.5 cm diameter shafts entering the sphere from
either pole (seeFig. 1). Each shaft is belt-driven by

Table 1
Important dimensional parameters for the experiment and sodium
at 120◦C

Symbol Description Value

b Impeller radius (cm) 6.35
a Sphere radius (cm) 15.6
η Sodium magnetic diffusivity (cm2/s) 830
ν Sodium kinematic viscosity (cm2/s) 7.39× 10−3

ρ Sodium density (g/cm3) 0.927

a 7.5 kW electric motor. The results we report in this
paper are for co-rotating impellers.

Two coils in near-Helmholtz configuration supply
the external field concentric to the axis of impeller
rotation. The applied field varies approximately 10%
from the center of the sphere to the outer edge. The
applied field decreases away from the center along the
axis of rotation, and increases in the other two perpen-
dicular directions. Magnetic fields are monitored with
Hall probes near the sphere. Three Hall arrays were
used: a 15 cm diameter ring (six probes) encircling one
pole azimuthally, a pole-to-pole arc (eight probes), and
an equatorial arc (seven probes) all of which measure
fields perpendicular to the applied field (seeFig. 1).
The equatorial array is augmented by two single Hall
probes, one of which is offset slightly from the equa-
tor. A Hall probe just outside the sphere next to one
shaft measured the field in the direction parallel to
the applied field.Table 1shows relevant experimental
parameters for our system. More detail regarding the
experimental apparatus can be found inPeffley et al.
(2000).

We perform experiments both with baffles and with
smooth walls. The baffles are thin stainless steel plates
that run from pole to equator in each hemisphere.
They extend 5% of the sphere diameter. These baf-
fles increase the ratio of poloidal to toroidal flow,
as originally motivated by Dudley and James’s study
(1989) of simple velocity fields in a spherical geometry
and their ability to self-generate. We found inPeffley
et al. (2000)that a trend toward self-generation us-
ing pulse decay measurement was only possible with
these baffles in place. In this experiment, the baffles’
role is to create topographic variation at the vessel
wall, analogous to topographic variation at the Earth’s
core–mantle boundary.

Experimental runs were performed using the fol-
lowing procedure. The impellers were spun at a fixed
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Fig. 1. Schematic of experimental apparatus showing the spherical vessel and impellers, pole-to-pole baffles, coils supplying the external
field, Hall probes, and Hall arrays (a pole-to-pole arc, a 15 cm diameter ring encircling one pole, and an equatorial arc). (b) shows a
photograph of the impellers. The two impellers have the same shape. The single Hall probe shown in the center of the figure is slightly
offset from the equatorial array outside the sphere. The array encircling one pole nearly touches the sphere (approximately 5 cm from the
sodium). All Hall probes measure the field perpendicular to the applied field, except for the probe at the pole (opposite the array encircling
one pole). Runs were performed with and without the baffles.

rotation rate, and the field was incrementally increased
through its full range. The maximum field obtainable
was 2×103 G. However, the magnets heated through-
out the day and thus lowered the maximum obtainable
field value. For each field value, data were taken for
several seconds (typically 4 or 16 s).

3. Equations of motion

The dimensionless equations of motion relevant to
our system are the Navier–Stokes equation with the

added Lorentz force:

∂	u
∂t

+ (	u · 	∇)	u = −	∇P + Re−1∇2	u
+N Re−1

m ( 	∇ × 	B) × 	B (1)

and the induction equation:

∂ 	B
∂t

= 	∇ × 	u × 	B + Re−1
m ∇2	B (2)

derived from Maxwell’s equations and Ohm’s law for
a moving conductor, where	u is the velocity,P the
pressure, and	B the magnetic field. The dimensionless
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Table 2
Relevant dimensionless parameters

Dimensionless parameter

Re Rem N

Definition UL/ν UL/η B2L/Uηρµ0

Range for experiment 5× 105 to
4 × 106

3.8–18 0–17

Estimate for Earth ∼108 ∼100 ∼105–107

Estimate for Sun ∼102–1011 ∼102–104 ∼1–104

Parameter estimates for the Earth use the westward drift rate of
field patterns (U ≈ 10−4 m/s) for the velocity andB = 5 G (radial
component at core-mantle boundary) toB = 500 G (estimated
toroidal component) for the magnetic field. Density, electrical
conductivity, kinematic viscosity, and length scale of the fluid core
are taken fromRoberts (1988). Estimates for the Sun are discussed
in Section 5.2.

parameters; the Reynolds numberRe = UL/ν, the
magnetic Reynolds numberRem, and the interaction
parameterN are described inTable 2 and the next
section. In the equations above, the velocity	u has
been scaled by the impeller tip speedΩb, time by
the rotational time scaleΩ−1, length by the sphere
radiusa, and the magnetic field	B by the imposed field
strengthB0 (Table 2) .

In addition, sodium is effectively incompressible in
these conditions:

	∇ · 	u = 0. (3)

No-slip boundary conditions for the velocity apply at
all surfaces. The magnetic field boundary condition is
approximately continuous with an exterior vacuum so-
lution, as stainless steel is a poor electrical conductor.

3.1. Dimensionless parameters

The state of the fluid flow, and thus the induced field,
depends on a competition between the inertial and
Lorentz forces (the second and fifth terms inEq. (1)).
The interaction parameter quantifies the competition.
An expression for the interaction parameter can be
found using dimensional analysis. Using Ohm’s law
	J = σ( 	E + 	u × 	B) (whereσ is the electrical con-
ductivity, and 	E the electric field) and a scaling from
Faraday’s law (Eind ∼ uBind), the dimensional form
of the Lorentz force per unit mass (	F = 	J × 	B/ρ)
scales as:

FLor ∼ σ

ρ
uBextBind + σ

ρ
uB2

ext (4)

whereρ is the density. The induced magnetic field is
about 1000 times smaller than the external magnetic
field in our experiments, so the second term above
dominates.

Since the advective term in the Navier–Stokes equa-
tion scales asU2/L, whereL is a characteristic length,
the interaction parameter can be expressed asN =
B2

extL/ηρµ0u, whereη ≡ 1/σµ0 is the magnetic dif-
fusivity, composed of the electrical conductivity and
magnetic permeability. Using the sphere radiusa, and
the impeller tip speedΩb, gives

N = B2
exta

ηρµ0Ωb
. (5)

The only other independent, adjustable dimension-
less parameter is the magnetic Reynolds number,
Rem ≡ UL/η. We defineRem using the sphere radius
and impeller tip speedRem ≡ Ωba/η. The mag-
netic Reynolds number quantifies the ratio of field
advection (twisting, stretching, etc.) to resistive dif-
fusion. Thus, this number must be greater than unity
to produce a dynamo. The (hydrodynamic) Reynolds
number, Re ≡ Ωba/ν, is related to the magnetic
Reynolds number by the ratio of kinematic viscos-
ity to magnetic diffusivity. This ratio, known as the
magnetic Prandtl numberPrm ≡ ν/η, is a property of
the fluid. For sodium at 120◦C, this number is small
(Prm = 8.3 × 10−6), meaning flows withRem > 1
will be highly turbulent (Re> 105).

4. Results

4.1. Time series

The induced field dynamics change markedly with
the interaction parameter. The five time series, shown
in Fig. 2, characterize the magnetic field fluctuations
observed over the range of interaction parameter in our
experiment. Except forFig. 2b, the time series for the
smooth wall case are qualitatively similar to those in
the case with baffles. The interaction parameter ranges
for the different regimes are shown inTable 3.

Fig. 2shows magnetic field time series for increas-
ing applied fields forΩ/2π = 10 Hz. For small fields
(Fig. 2a) the induced field fluctuates erratically, sim-
ilar to the fluid velocity fluctuations of the underly-
ing turbulence; the magnetic field is simply a passive
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Table 3
The five regimes

Regime Range
(smooth walls)

Range
(baffles)

Beginning boundary Character

I 0 < N < 0.3 0< N < 0.3 	B passive vector
I∗ 0.3 < N < 0.6 Increasing slope ofσ (seeFig. 9a) m = 1 oscillations
II 0.6 < N < 2 0.3 < N < 3 First peak ofσ (seeFig. 9) Turbulence suppression
III 2 < N < 9 3< N < 7 Start of induced field frequency peak

(seeFig. 3)
m = 2 oscillations,f depends onBext

IV N > 9 N > 7 Start of frequency locking (seeFig. 3) m = 2 oscillations,f independent ofBext

vector. Increasing the applied field strength, large os-
cillations emerge in regime I∗ (Fig. 2b), though only
with smooth walls. In regime II (Fig. 2c), the fluctu-
ations become smaller despite a larger applied field,
indicating the suppression of turbulence. This is con-
sistent with other studies of MHD turbulence, where
turbulence suppression by applied fields is well estab-
lished(Cowling, 1957; Moreau, 1990). In the smooth
wall case, regime II also shows a suppression of the
regime I∗ oscillations. In regime III (Fig. 2d), another
instability forms as large oscillations in the time series
emerge. The frequency of these oscillations increases
with the applied field (detailed inSection 4.2). Finally,
in regime IV (Fig. 2e), the oscillations acquire mod-
ulations, and lock onto subharmonics of the impeller
rotation rate.

4.2. Composite Fourier spectra

Now we examine the power spectra to show how the
system evolves through the different regimes.Fig. 3
shows power spectra of magnetic field as a function of
applied field for a fixed rotation rate. Each horizontal
line of the images is formed from the power spectrum
at one value of the applied field. In the figure we have
indicated the regimes that are exemplified inFig. 2. In
regime I, the power spectra is broadband and increases

�

Fig. 2. Time series of the induced magnetic field measured outside the sphere at the equator for each of the regimes (for smooth walls).
In each, the time-averaged magnetic field has been subtracted. The magnetic Reynolds number isRem = 7.5, corresponding to an impeller
rotation rateΩ/2π = 10 Hz. The interaction parameter is shown for each time series. As the interaction parameter increases: (a) regime
I, the induced magnetic field exhibits turbulent fluctuations, as the magnetic field acts as a passive vector; (b) regime I∗, an instability
with large oscillations at approximately 30% the impeller rotation rate occurs (with smooth walls only); (c) regime II, the turbulence and
oscillations are suppressed by the Lorentz forces; (d) regime III, large coherent oscillations occur again where the frequency depends on
the applied magnetic field; and (e) regime IV, the oscillations decrease in magnitude, acquire a modulation, and the frequency locks (for
the case with baffles) to half the impeller rotation rate.

in intensity as the applied field is increased. In regime
I∗ (Fig. 3aonly), we see the emergence of a frequency
peak. In regime II, where turbulence is suppressed,
the intensity decreases with increasing applied field.
Regime III begins with the emergence of an intense
single frequency peak whose frequency increases with
applied field (nearly linearly for the case with baffles,
Fig. 3b).

A standing Alfvèn wave resonance frequency would
also increase linearly with applied field; however, there
are at least four problems with an Alfvèn wave origin
for these oscillations. First, the frequency range is too
low. The Alfvén velocity,vA = B/

√
µ0ρ, at 1000 G

for our experiment is 2.8 m/s. The resulting resonance
for a box of length 2b, the sphere diameter, is thus
9.9 Hz—several times too large for the observed oscil-
lations at 1000 G for theRem explored in our experi-
ment. Second, the induced field frequencies in regime
III increase with rotation rate, as evidenced by the
collapses inFig. 4. No obvious fluid motion would
modify an Alfvén wave resonance in this way. Third,
the (extrapolated) zero field induced field frequency
in our experiment is non-zero. Lastly, inFig. 3a, the
frequency increase in regime III deviates more signif-
icantly from a linear trend, and there is an even lower
frequency peak (∼0.1 Ω) that changes slowly (and
nonlinearly) with applied field.
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Fig. 3. Images composed of induced field power spectra. Applied field increases up the page, where each horizontal line is a power
spectrum of the induced field for smooth walls (a) and with baffles (b). The applied field increases in steps of≈22 G (a) and≈18 G (b).
The deviation from a linearly-increasing field in this figure is estimated to be less than 1% and the nonlinearities are limited to the highest
field values due to coil heating. Color indicates logarithmic intensity, from highest to lowest: red–yellow–green–blue. The impeller rotation
rate is 10 Hz (Rem = 7.5). The regimes are indicated on the right. Both spectra were obtained from a probe at the equator, though the
qualitative features are similar at any point outside the sphere.
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Fig. 4. The most intense induced field frequency in regimes I∗, III and IV for impeller rotation rates: 5 Hz,Rem = 3.8 (�); 7.5 Hz,
Rem = 5.6 (�); 10 Hz,Rem = 7.5 (�); 12.5 Hz,Rem = 9.4 (�); 15 Hz,Rem = 11.3 (×); and 22.5 Hz,Rem = 18.75 (+). Data is shown in
(a) with smooth walls and (b) with baffles. The frequency and applied field have been made dimensionless using the rotation rate and the
interaction parameter.N1/2 is used instead ofN here (and elsewhere) because the former is linear inB. In regime III, we have followed
the 0.2 < 2πf/Ω < 0.5 peak and not the peak 2πf/Ω < 0.1.
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Regime IV begins where the single frequency of
regime III reaches 2πf = Ω/2, at which point the
single frequency splits into three frequencies and locks
onto the rotation rate. The central peak at 2πf = Ω/2
is nearly independent of the applied field strength; two
sideband modulations near 2πf = Ω/4 and 3Ω/4
change slowly with the applied field.

We have extracted the dominant frequency peak in
regimes I∗, III, and IV as it changes with applied field
for multiple rotation rates, as shown inFig. 4. The
frequency and magnetic field strength were made di-
mensionless using the rotation rate and the interaction
parameter. Were the interaction parameter the only
relevant parameter, the curves would collapse. How-
ever, the collapse is imperfect, especially in regime
III—a given oscillation frequency occurs at a some-
what higher interaction parameter for higher impeller
rotation rates. Also, there are secondary features—an
overshooting of the 2πf = Ω/2 frequency, as well as
the frequency remaining unchanged for small ranges
of interaction parameter—that depend on magnetic
Reynolds number. These are likelyRem effects, be-
cause the magnetic Reynolds number is the only other
relevant, independent non-dimensional parameter.

4.3. Induced field structure

The induced field oscillations in regimes I∗, III, and
IV are present at every point near the sphere’s surface.
To examine the spatial structure of these oscillations,
we calculate correlations in azimuthal and poloidal
Hall probe arrays.

Fig. 5 shows the spatial correlations, along with
schematic versions of the induced field derived from
these correlations, for regimes I∗ and IV. Regime III
(not represented in this figure), like regime IV, has an

�

Fig. 5. Correlations of induced field. The cross-correlation as a function of poloidal angle for regime I∗ (a) and regime IV (b), and as a
function of azimuthal angle at the equator for regime I∗ (c) and regime IV (d), and as a function of azimuthal angle near one pole in
regime IV (e). The cross-correlation is defined as:C(x) = 〈A(t)B(t)〉/

√
〈A(t)2〉〈B(t)2〉 whereA(t) andB(t) are magnetic field time series

with time averages subtracted, from Hall probes separated by an anglex; brackets indicate time averages. In each array, cross-correlations
were computed relative to one probe, giving correlation as a function of angular separation. In the poloidal array, the probe nearest one
pole was chosen as a reference, since that permitted the largest angular separation. In the array encircling a pole, the reference probe was
chosen arbitrarily (the results are independent of reference). These measurements were taken atRem = 7.5 (Ω/2π = 10 Hz) with smooth
walls. In (c), the probe at 103◦ is offset from the equator, which explains the deviation from them = 1 trend. In the lower left corner, a
schematic shows the idealized induced field pattern consistent with correlation data for regimes I∗ and IV. The field component is in the
cylindrical-radial direction. White and black indicate positive and negative induced field. The patterns precess in the prograde direction.

m = 2 correlation at the equator and is equatorially
anti-symmetric, but it does not have a well-defined
poloidal wave numberl, as correlations near the poles
are weak (seeFig. 8d). Also, in regime IV there is an
m = 0 component mixed in with them = 2 correlation
near the pole (Fig. 5e). In Fig. 6, cross-correlations
between judiciously chosen probes as a function of
interaction parameter show how the modes, described
above, evolve with interaction parameter.

From temporal cross-correlations on the equatorial
array, we can determine if the induced field patterns
precess, and if so in which direction. We first compute
the cross-correlation function for pairs of probes:

C(τ, φ) = 〈A(t)B(t + τ)〉√
〈A(t)2〉〈B(t + τ)2〉

.

Here, A(t) and B(t) are magnetic field time series
with time averages subtracted, from Hall probes sep-
arated azimuthally by an angleφ; brackets indicate
time averages. The time lag that maximizes the cor-
relation,τmax, determines the time for the pattern to
travel the angular distanceφ. We find thatτmax in-
creases linearly with angular separation, indicating
azimuthally-traveling waves or precessing vortices in
the fluid motion. From the relative signs ofτmax, φ,
and the impeller rotation direction, we found that this
motion was prograde (i.e. in the direction of impeller
rotation).

Fig. 7 shows the precession speed deduced with
this technique as a function of interaction parame-
ter. Shown also is the peak induced-field-spectral-
frequency scaled bym, for the sameRem. The two
curves collapse for most values of interaction param-
eter, suggesting that the induced field oscillations are
the result of precessing spatial patterns. This collapse
provides new insight into the dynamics of regime
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Fig. 6. Correlations vs. interaction parameter. The left two panels show cross-correlation between two probes separated by 170◦ on the
equatorial array with smooth walls (a) and with baffles (b). The right two panels show cross-correlations between two probes, each 45◦
from the equator on opposite sides with smooth walls (c) and with baffles (d). The cross-correlations in (c) and (d) were computed from
4 s time series and in (a) and (b) from 16 s time series. This measurement time difference is reflected inFig. 6c and dwhere the correlation
has more scatter at low interaction parameter.

III: the frequency peak increasing with applied field
is caused by an increasing precession velocity of an
m = 2 pattern in the flow. However, forN1/2 > 3.0,
the deduced precession velocity is somewhat greater
than the peak frequency scaled bym. This discrepancy
is likely associated with the observed modulations in
regime IV (seeFigs. 2e and 3).

Since coherent structures (with relatively long
correlation times) are precessing azimuthally, the
pole-to-pole array should provide a nearly complete
picture of the induced field dynamics.Fig. 8 shows
induced field space–time diagrams for this array. Six
diagrams are shown—one each for regimes I, I∗, II,
and IV, and two for regime III. In regime I∗, we see
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Fig. 7. Dimensionless precession frequency from cross-correlations (�), and frequency peak from induced field power spectra scaled by
m (�), vs. interaction parameter. The precession frequency was obtained by first maximizing the cross-correlation functionC(τ, φ) for
probes separated byφ on the equatorial array. The precession angular velocity is a linear fit to angular separationφ vs. optimum time lag,
τmax(φ). The error bars for precession speed indicate the standard deviation of the fit. The error bars on the induced field frequency peak
is the bin size in the Fourier transform algorithm. Both frequencies have been scaled by the rotation rateΩ/2π. These measurements were
taken atRem = 7.5 (Ω/2π = 10 Hz) with smooth walls.

the oscillations appear to be caused by precessing
(perhaps columnar) structures tilted relative to the
axis of rotation (Fig. 8b). Precessing structures also
appear to cause the oscillations in regime III (Fig. 8d
and e). As one looks from pole to pole in that regime,
it appears the structures are divided into zones. The
dynamics between the zones is not strongly correlated,
reflecting the lack of a distinct poloidal wave number
in regime III. Two things happen inFig. 8d and e
as the interaction parameter increases: the coherence
between the zones increases, and the zonal boundary
shifts toward the equator. Both effects are also evident
in Fig. 6b and d, where the anti-correlation increases
steadily pastN1/2 = 2.

In regime IV, the coherence between zones increases
further still. Here, the structures seem more wavy than

divided discretely into zones. Additional boundaries
have formed in between the first and second probes and
also between the last two probes directly opposite the
equator (not shown, seeFig. 8 caption). These wavy
structures give rise to thel = 3 correlation shown in
Fig. 5b.

It should be noted that inFig. 8b, d–fthe strongest
oscillations (i.e. where the peaks are brightest and
most sharply defined) occur at large angles. This
asymmetry most likely results from asymmetry in
the impellers: the impellers have the same helicity
so that faced opposite and co-rotating—as in our
experiment—one impeller “scoops” while the other
does not (seeFig. 1b). The scooping impeller is at
largeθ in Fig. 8; thus, the greater entertainment of the
scooping impeller apparently enhances the instability.
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Fig. 8. Six different space–time diagrams of induced field in the poloidal array. Each horizontal line shows the magnetic field intensity
(indicated by color) vs. poloidal angle; time increases up the page. The time averages of each probe have been subtracted. Red indicates
the highest field values and blue the lowest. Six diagrams, (a)–(f), are shown with the regime indicated above each. The corresponding
interaction parameters are: (a)N1/2 = 0.28, (b) N1/2 = 0.75, (c) N1/2 = 1.1, (d) N1/2 = 2.1, (e) N1/2 = 3.0, and (f)N1/2 = 4.0. All
diagrams are for the smooth wall case andRem = 7.5 (Ω/2π = 10 Hz). In each diagram, eight probes are used. Note that each diagram
is not centered about the equator—the probe nearest the right pole failed during the run and was not included.

4.4. Induced field fluctuation magnitudes

Another way to observe interaction parameter ef-
fects is through the magnitudes of the induced field
fluctuations.Fig. 9 shows the standard deviation of
the induced fieldσ as it changes with the external
field for a single rotation rate. In regime I, the mag-
netic field is a passive vector in the turbulent flow, and

the standard deviation increases linearly with applied
field. In regime I∗ (Fig. 9aonly), as them = 1 in-
stability forms, the fluctuations increase more sharply
(though still linearly) with applied field. Then, in
regime II, the fluctuations diminish with increasing
applied field—a sign that turbulence in the velocity
field is suppressed. The fluctuations increase again in
regime III due to them = 2 instability. This rise in
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Fig. 9. Standard deviation of the induced field vs. applied field (a) with smooth walls and (b) with baffles. Both (a) and (b) are for
Rem = 7.5. The field fluctuations were measured in the radial direction at the equator. The regimes are indicated.

σ occurs despite a further suppression of turbulence
in regime III, evident from the decrease of broad-
band content in the power spectra. The oscillation
magnitude then decreases in the latter half of regime
III. Finally, in regime IV the oscillations decrease
further and then change only slowly with the applied
field.

The fall of the standard deviation in regimes III
and IV is due partly to the shifting zones seen in
Fig. 8. Indeed, the standard deviation curves for
probes at different polar angles look somewhat dif-
ferent. For instance, the peak in regime III occurs at
different interaction parameter, and for some probes
the standard deviation increases with applied field
in regime IV. This difference can be seen quali-

tatively in Fig. 8, as described above inSection
4.3. The fall of the standard deviation in regime
II, however, seems to be a general suppression of
turbulence.

Fig. 10 shows the induced field standard devia-
tion for several magnetic Reynolds numbers. A col-
lapse is attempted for these data by scaling the applied
field using the interaction parameter, and by scaling
the magnitudes by a characteristic field value,Bc ≡√
ρµ0ab3Ω3/η.
This characteristic field value is arrived at from the

equations of motion. Assuming large Reynolds num-
ber and moderate interaction parameter, the advective
force and the Lorentz force are both dominant and
comparable in magnitude. Thus, we obtain from the



Fig. 10. Dimensionless standard deviation of the induced field as a function of the applied field (a) with smooth walls and (b) with baffles
for the magnetic Reynolds numbers: 3.8 (�), 7.5 (�), 15 (�), and 18.75 (�). The data are made dimensionless using the interaction
parameter and a characteristic magnetic field,Bc ≡

√
ρµ0ab3Ω3/η.
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dimensional form ofEq. (1),

(	u · 	∇)	u ∼ 1

ρµ0
( 	∇ × 	Bind) × 	Bext

which implies

ρµ0U
2 ∼ BextBind. (6)

From the induction equation (where the time derivative
term has been dropped, since it should be somewhat
smaller than the diffusive term):

	∇ × 	u × 	Bext ∼ η∇2	Bind.

This implies that

Bind ∼ BextUL/η. (7)

The proportionality inEq. (7)should not be taken as
an equality due to ambiguities in the choice of velocity
and length scales from the induction equation.

Fig. 11. Dimensionless torque as a function of interaction parameter for a rotation rate of 15 Hz (Rem = 11.3), with smooth walls (�) and
with baffles (�). The torque shown is the average of both motors. Because the data sets were (necessarily) taken during different runs,
there is an uncertainty in the relative offset of the two curves due to unknown differences in frictional losses in the seals. This offset is
estimated to be less than 5% of the smooth wall zero field value.

EliminatingBext from (6) and (7) yields

Bind ∼ Bc ≡
√
ρµ0ab3Ω3/η

where the impeller tip speedΩb has been substituted
for U and the sphere radiusa for L. Thus, we might
expect the standard deviation of the induced field to
scale asBc. From Fig. 10, we see that making the
standard deviation ofBind dimensionless asσ/Bc and
Bext dimensionless asN1/2 causes the differentRem
cases to collapse.

Taken together,Figs. 4 and 10demonstrate that the
interaction parameter controls much of the qualitative
changes in the system for the full range ofRem values
and applied fields explored in this experiment.

4.5. Motor torque

We also observe significant changes in the torque as
the interaction parameter is increased.Fig. 11 shows
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the motor torque required to co-rotate the impellers at
a fixed rotation rate (Rem = 11.25) versusN1/2. The
top curve is with baffles and the bottom with smooth
walls. The salient and somewhat surprising feature of
this figure is that with increasing magnetic field the
torqueincreaseswith smooth walls anddecreaseswith
baffles.

Two other differences in the two torque curves are
apparent as well. First, at zero field the torque is lower
with the smooth wall case. This is not surprising. The
torque required to spin the impellers is a measure of the
momentum transfer from the impellers to the spher-
ical container. The baffles, which entrain fluid in the
azimuthal direction—the dominant component of the
mean flow—will thus aid this momentum transfer. Fi-
nally, the two curves converge (to within uncertainty)
at high interaction parameter. This convergence, oc-
curring also for other rotation rates, appears robust.

5. Discussion

In this section, we will interpret our measurements,
and discuss their connection with prior scientific work
and their relation to the Earth and the Sun.

Applied magnetic fields are known to increase the
rigidity of conducting fluids in the direction of the
field. As the applied field increases in our experiments,
a cylinder of sodium between the impellers would
become increasingly coupled to the impeller rotation
rate. Correspondingly, the fluid outside the cylinder
would be increasingly tied to the boundary. As this
happens, we might expect momentum transport from
the impellers to the wall to decrease, reducing drag and
thus torque. Indeed, with baffles the required torque
decreases with imposed field over a large range ofN.

For small applied fields the drag is greater with
rough walls than with smooth. One might thus ex-
pect the torque decrease to be weaker without baffles.
However, with smooth walls the torqueincreaseswith
applied field. A possible mechanism for this increase
involves how the applied field affects the boundary
layers. As the applied field increases, the Hartmann
layer at the sphere wall becomes thinner, increasing
the viscous drag across it. This would increase the
coupling between the fluid and the outer wall, caus-
ing the torque to increase with applied field. The case
with baffles does not show the effect of the thinning

boundary layers however (i.e. the torque does not in-
crease with applied field). This discrepancy is likely
due to the way angular momentum is transferred to
the wall in the two cases. With smooth walls, viscous
boundary layers alone control the momentum trans-
port. In the other case, pressure drops across the baf-
fles apparently cause most of the transport.

The torque with smooth walls plateaus and then de-
creases slightly aroundN1/2 = 1.5. A similar plateau
occurs with baffles aroundN1/2 = 2.5 (Fig. 11).
There is no obvious connection between this appar-
ent saturation and changes in the induced field char-
acter. The best connection, which is rather tenuous,
is found inFig. 6b and d: the trend toward equatorial
anti-symmetry begins roughly at the same interaction
parameter where the torque deviates from its linear
trend in Fig. 11. The torque curves may be best ex-
plained by changes in the velocity field that are not
reflected in the magnetic field data. In the future, we
plan to measure the velocity directly using ultrasound
velocimetry.

The picture involving the tendency for magnetic
fields to tie fluid along field lines also leads to an ex-
planation for the observed oscillations in regimes I∗,
III, and IV. In the large field limit, the fluid forms a
cylinder between the impellers undergoing solid body
rotation while the surrounding fluid is stationary. As a
rotating cylinder of sodium forms, so would a strongly
sheared boundary. Traveling waves or precessing vor-
tices would likely form at this boundary, giving rise
to the observed oscillations in the induced field.

Experiments byLehnert (1955)first showed, in a
very different geometry, how magnetic rigidity can
lead to vortex formation in liquid metals. In the ab-
sence of applied fields Lehnert’s experiment was lam-
inar, whereas ours is highly turbulent. Experiments
similar to Lehnert’s have been performed byMoreau
(1990), Brito et al. (1995).

In a system similar to ours,Hollerbach and
Skinner (2001)find (numerically) vortices forming in
a magnetically-induced shear layer. Like ours, their
flow was in a spherical container with strong mag-
netic fields imposed parallel to the axis of rotation;
however, their driving was a rotating inner sphere,
not co-rotating impellers. At high fields they find a
solidly-rotating cylinder tangent to the inner sphere;
thus, we would expect the two systems’ dynamics to
converge at largeN. They found vortices precessing
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at a fraction of the inner sphere rotation rate in their
system. The number of vortices depended mainly on
the applied field and the boundary conditions (con-
ducting or non-conducting), though Reynolds number
effects were also observed.

Though we are unable to measure the sodium ve-
locity in our experiment directly, our magnetic field
measurements are consistent with the precessing vor-
tex patterns described by Hollerbach and Skinner. In
particular, we infer velocity patterns in our experiment
similar to them = 1 and 2 instabilities described by
Hollerbach and Skinner. However, extrapolating from
Hollerbach and Skinner’s study to our parameter range
we would expect much higherm modes to be most
unstable. For example, in our experiments for a mag-
netic field of 1000 G (expressed in their paper using
the Hartmann number, the ratio of the magnetic to
viscous time scales), Hollerbach and Skinner predict
m = 5 (m = 12) for insulating (conducting) boundary
conditions to be the first unstable mode.

The critical Reynolds numbers for both boundary
conditions areRe≈ 1000, which are much lower than
the lowest obtainable Reynolds number in our experi-
ment (extremely low rotation rates are difficult to con-
trol accurately). However, for two values of applied
field (for each boundary condition) they increased the
Reynolds number past the critical values to observe
how the system equilibrates in the supercritical regime.
They found that the torque needed to spin the inner
sphere increased at the onset of the first instability. In
our runs without baffles we also observe the torque
increasing at the instability onset. In our experiments
we increase the magnetic field to induce the instabil-
ity, since we can not lower the rotation rate below the
critical Reynolds number for even the highest field ob-
tainable. Notice inFig. 11, in the smooth wall case, the
torque is nearly constant untilN1/2 = 0.4; in Fig. 4a,
them = 1 instability also occurs atN1/2 = 0.4. The
torque for that case then steadily increases and then
decreases with applied field, seemingly independent
of further instabilities.

As the Reynolds number is increased past its crit-
ical value, Hollerbach and Skinner observe that the
azimuthal wave numberm is reduced, through a sub-
critical bifurcation. For the range of Reynolds number
that they study (up to approximately twice the criti-
cal value) them value is reduced at most by one. The
Reynolds number in our experiment, by contrast, is

hundreds of times their critical value. That we only
observe lowm instabilities in our experiments (in-
stead of the higherm instabilities that Hollerbach and
Skinner predict to be most unstable) is evidence for
additionalm reductions occurring at higher supercrit-
icality. It is not clear whym = 2 is favored at high
applied field in our experiment, nor whym = 1 is
favored at intermediate applied field. In fact, Holler-
bach and Skinner never find anm = 1 instability. It
is possible thatm = 1 modes are only seen at high
Reynolds number or are a feature associated with geo-
metric differences. In our experiment, the progression
from m = 1 to 2 as the applied field increases is sim-
ilar to the favoring of higherm modes as the applied
field increases that Hollerbach and Skinner observe. It
appears that at high supercriticality some features of
the regime near criticality remain (e.g. preferring high
m modes at high applied fields) while other features
change (e.g. the appearance and then suppression of a
previously unseenm = 1 mode).

Another feature that is due to either high supercrit-
icality or geometric differences is the equatorial sym-
metry of the instabilities. Hollerbach and Skinner find
only equatorially symmetric instabilities. Our exper-
iments show both symmetric and anti-symmetric in-
stabilities. More specifically, them = 1 instability
corresponds to anl = 2 (i.e. equatorially symmetric)
pole-to-pole induced field correlation (Fig. 5a), and
the m = 2 to an l = 3 (anti-symmetric) correlation
(Fig. 7b). Note that these correlations are not the sim-
plest symmetric and anti-symmetric states possible.
As seen inFig. 8 and as discussed above, the tran-
sition to equatorial anti-symmetry is due to apparent
undulations in columnar vortices.

Interestingly,Moreau (1990)speculates that such
undulating columnar vortices parallel with the applied
field would form forN � 1. This prediction came
from a theoretical extension to much larger applied
fields for the experiment described inAlemany et al.
(1979). The flow there was generated in a circular col-
umn of mercury by driving a grid at constant velocity.
They only reachedN ≈ 1 and did not observe these
vortices. For the largeN limit Moreau concluded that
the columnar vortices would undulate in the direction
of the applied field with the characteristic lengthl‖ ≈
l⊥N1/2, wherel⊥ is a characteristic length transverse
to the applied field. This contrasts with our finding
that as the interaction parameter is increased,l‖ de-
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creases (as new zones are added) (Fig. 8). There is lit-
tle change inl⊥ as that is slaved to the azimuthal wave
numberm. Indeed, in regimes III and IV, wherel‖ is
decreasing, the wave number (m = 2) remains con-
stant. The resolution of our pole-to-pole array is too
low to more precisely determine howl‖ scales withN.

Although we have not directly measured the ve-
locity field, it seems most likely that the oscillatory
instabilities result from precessing, wavy, columnar
vortices in the flow aligned with the applied field. It
is not clear, however, why the precession rate changes
as it does with applied field (Fig. 7). Hollerbach and
Skinner report precession rates for different applied
fields and Reynolds number, but for a given Reynolds
number they never report the precession rate for more
than one applied field value. Hollerbach and Skin-
ner also find that, for a given applied field, higher
azimuthal wave numbers precess faster. For exam-
ple, for a field equivalent to 350 G and a Reynolds
number ofRe = 2000 they find that them = 3 so-
lution precesses at 0.179Ω and them = 2 solution
at 0.15Ω. In contrast, we find in our parameter range
that lowerm modes precess faster (seeFig. 7). The
magnitude of Hollerbach and Skinner’s precession
rates is comparable to ours.

Labbé et al. (1996)observe a similar phenomenon
in a different system that may provide a clue to this
changing precession speed mechanism. They exper-
imentally studied co-axial, co-rotating von Kárman
flow in air and found precessing vortices near the
edge of their impellers. The precession period was
found to increase with separation distance of their
rotating disks. In other words, decreasing the length
scale (set by the impeller separation) increases the
vortex precession rate. In regimes III and IV, we
found a shortening length for the poloidal zones with
increasing interaction parameter. So it is possible
this length-scale shortening leads to the increased
precession rate. It would be interesting to vary the
impeller separation in our experiment and repeat the
measurements.

There is, however, a significant discrepancy in the
dynamics of our system and Labbé et al.’s. In their
experiment, the vortex precession is retrograde; in our
experiment the precession, as measured at the equator
(Section 4.3) and the array encircling one pole, is pro-
grade. Their study, conducted using air, was of course
non-magnetic, further suggesting that magnetic fields

play a crucial, non-trivial role in the dynamics of our
system.

5.1. Effect of the baffles

With or without baffles the overall dynamics in
the system are quite similar. Note, for example, the
similarity in the two cases inFigs. 3, 6, 9 and 10.
However, there are four main effects produced by the
baffles. Most significant is how the torque changes
with applied field for a fixed rotation rate. With baffles
the torque decreases with increasing applied field, and
without baffles the torque increases. The magnitude of
the torque decrease with baffles is larger than the in-
crease without. Second, the baffles suppress them =
1 oscillations that emerge in the intermediate range of
interaction parameter. It appears this state is sensitive
to the boundaries. Thism = 1 instability begins at
the same applied field as the turbulence-suppressing
regime II with baffles (seeFig. 9). Third, the range
of N values for regime III is increased, beginning at
smallerN and ending at largerN (seeTable 3). The
dynamics in regime III, as described inSection 4.3,
are postulated to result from precessing columnar vor-
tices. Thus the baffles apparently suppress the forma-
tion (or precession) of the vortices, and better lock the
vortex precession rate to half the impeller rotation rate.
The latter effect is evident inFig. 4, where the induced
field frequency peak is one half for large interaction
parameter with baffles but only approaches one half
without.

Finally, the baffles increase the magnitude of in-
duced field oscillations in regime I. As seen inFigs. 9
and 10, the slope ofσ versusBext is steeper with
baffles. The baffles either make a more turbulent flow
(assumingBrms ∼ urms), or makes the flow more
efficiently generate induced fields (i.e.Rem is effec-
tively made larger for a given rotation rate). This
effect of the baffles disappears at higher interaction
parameter.

5.2. Application to the Earth and Sun

Core–mantle coupling—exchange of angular mo-
mentum between the core and the mantle—is thought
is to be responsible for variations in the Length of Day,
and in the orientation of Earth’s axis of rotation. The
degree of coupling is also an important parameter in
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many dynamo models(Roberts, 1988). Coupling can
occur in a number of ways, including topographically
or electromagnetically. These two processes are often
considered separately (e.g.Jault et al., 1996; Aldridge
et al., 1990). However, our results show that Lorentz
forces and topography need to be considered together,
at least in our parameter range. Indeed, the magnetic
field can either enhance or weaken angular momentum
transfer (≈50% over the range of interaction parameter
in our experiment) to the outer case depending on the
topography of the vessel walls (seeFig. 11). In our ex-
periment the angular momentum transfer, with baffles
and without, seems to converge at higher interaction
parameter. This suggests that magnetic effects come to
dominate and “wash out” pure topographic coupling
when the interaction parameter is greater than about
N = 5. The estimated values of interaction parameter
in the Earth are much larger than in our experiment;
thus, the Earth operates either in regime IV or in some
higher regime of Lorentz force domination.

Maps of the radial component of the magnetic
field for 1715–1980 at the surface of the Earth indi-
cate structure having similarities to our data. In that
interval, the radial component of the Earth’s field
shows a fixed pattern of four flux concentrations
(lobes) placed anti-symmetrically about the equator
(Gubbins and Bloxham, 1987). Similar to regimes
III and IV in our experiment, these lobes are placed
anti-symmetrically about the equator. Paleomagnetic
evidence, which samples the Earth’s field on longer
time intervals, suggests that these lobes do drift,
though more slowly than the characteristic westward
drift velocity (Constable et al., 2000). In our experi-
ment, magnetic structures also drift slowly compared
to the characteristic velocity (i.e. the impeller rotation
rate). The relatively slowly moving flux pattern in the
Earth is commonly thought to be an effect of heat
flux inhomogeneities at the core–mantle boundary
(Bloxham and Gubbins, 1987). However, our experi-
ment, having no such inhomogeneities, suggests this
motion could be a more robust dynamical feature.
Indeed, one might guess that global rotation or the dif-
ferent forcing of the flow in the Earth would frustrate
the instabilities seen in our experiment. Future exper-
iments will determine how robust these instabilities
are.

There is a length scale for which the flow within
the core has the same interaction parameter as our

experiments. This is approximately 10−5 the radius
of the core, or about 30 m. One obvious location
where the dynamics at this scale could affect geomag-
netic observables are the core–mantle and inner core
boundary layers. The boundary layers (thermal and
Ekman) act as valves for both heat and momentum
flux through the outer core. Our observations of the
effects of Lorentz forces and roughness (baffles) on
momentum transport may apply to these boundary
layers. In addition to the effects on angular mo-
mentum transport discussed above, there should be
Lorentz force effects on heat flux and core cooling.
It has been argued that the turbulent momentum and
heat flux are slaved together (by use of the Reynolds
analogy, i.e. a unity turbulent Prandtl number)(Kays
and Crawford, 1980). Using this concept and our ob-
servations of torque dependence one might expect that
the heat flux from the rough core–mantle boundary is
reduced when the dynamo first turns on. This might
act as one saturation mechanism for the geodynamo.
Future experiments are needed to directly probe the
effects of Lorentz force on heat flux.

On this note, we recognize that our experiment is
not an ideal geophysical model. One obvious short-
coming, as previously mentioned, is that our sphere
is non-rotating—the fluid only rotates due to the
co-rotating impellers. We are thus not in a low Rossby
number regime as the Earth and most astrophysical
objects are. Furthermore, a system driven by impellers
is simpler than a system driven by convection, such
as the Earth. The experimental compromises in this
experiment were necessary, however, due to the diffi-
culty and safety concerns in performing these types of
experiments. Rotating our sphere would cause safety
problems associated with decoupling the system from
an overflow reservoir. Also, without impellers we
would be unable to reach the magnetic Reynolds
numbers reached in this experiment (without amuch
larger device), as convection causes weaker fluid
velocities. Experiments with a new 60 cm diameter
rotating convection apparatus are underway that may
illuminate the effects of these simplifications.

The parameter ranges for the Sun come closer to
overlapping with our experiment, though there are
significant differences (e.g. the sun is plasma, and has
a stratified structure). Unfortunately, uncertainties in
diffusivity, field strength, and the relevant length scale
yield a large range for estimates of the interaction
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parameter for the Sun 1< N < 104 (Fisher et al.,
2000; Gough and McIntyre, 1998; Charbonneau and
MacGregor, 1997; Moffatt, 1978; Christensen-
Dalsgaard et al., 1996; Gilman, 2000). The Rossby
number of the Sun isRo ∼ 10−1, four-orders of
magnitude larger than in the Earth. It is possible that
the relatively stronger effect of advection relative to
rotation in the Sun partially explains why the Sun has
more periodic dynamics than the Earth.

6. Conclusion

We have observed the effect of Lorentz forces on
turbulent flow by applying large external fields to a
flow in liquid sodium. An interaction parameter of
N = 17 has been reached for magnetic Reynolds num-
ber up toRem = 18.

Our observations indicate five regimes, which re-
flect changes in the dynamics as Lorentz forces come
to dominate. As the applied field increases, the turbu-
lence is suppressed and the system undergoes first an
m = 1 instability (with smooth walls only) and then
anm = 2 instability. From magnetic data and compar-
ison toHollerbach and Skinner (2001), we infer that
the instabilities consist of precessing columnar vor-
tices aligned with the field (we have no direct velocity
or vorticity data). The induced field patterns are di-
vided into zones at different polar angles. The number
of zones grows with increasing interaction parameter.
The precession speed of these patterns increases with
imposed field in regime III, and then remains approxi-
mately constant with imposed field in regime IV. This
increasing precession speed may result from the short-
ening of the poloidal wavelength of the inferred vor-
tices, possibly related to the mechanism described in
Labbé et al. (1996). When this wavelength is compa-
rable to the sphere radius, equatorially anti-symmetric
states result.

The torque needed to co-rotate the impellers
changes with interaction parameter, and depends
non-trivially on the topography of the spherical ves-
sel. These results might be useful in future studies of
core–mantle coupling. Our results also suggest that
in the absence of global rotation, at large interaction
parameter, core–mantle coupling is insensitive to the
mantle topography.
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