PHYS 411

Discussion Class 1

7 September 2007

1. Is the cross product associative, i.e. is

$$
(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}=\mathbf{A} \times(\mathbf{B} \times \mathbf{C})
$$

true for arbitrary vectors \mathbf{A}, \mathbf{B} and \mathbf{C} ?
If so, prove it; if not, provide a counterexample.
2. Find the transformation matrix R that describes a rotation by 120° about an axis from the origin through the point $(1,1,1)$. The rotation is clockwise as you look down the axis toward the origin.
3. Compute the divergence of the vector function

$$
\mathbf{v}=\frac{\hat{\mathbf{r}}}{r^{2}}
$$

using just the definition of divergence. Then check the validity of the divergence theorem by considering a spherical surface. The answer may surprise you...can you explain it?
4. Prove the following relations for Delta functions.

$$
\begin{aligned}
\delta(k x) & =\frac{1}{|k|} \delta(x) \quad \text { (} k \text { is a non }- \text { zero constant) } \\
x \frac{d}{d x}[\delta(x)] & =-\delta(x) \\
\frac{d \Theta}{d x} & =\delta(x) \quad \text { (where } \Theta \text { is the Heavyside step function) }
\end{aligned}
$$

Solutions

1. The triple cross product is not associative, in general. For example, suppose $\mathbf{A}=\mathbf{B}$ and $\mathbf{C} \perp \mathbf{A}$. Then $(\mathbf{B} \times \mathbf{C})$ points outward and $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})$ points down, as shown in Figure 1.1. Clearly, the magnitude $A B C \neq 0$. However, $(\mathbf{A} \times \mathbf{B})=0$ by construction, so $(\mathbf{A} \times \mathbf{B}) \times \mathbf{C} \neq \mathbf{A} \times(\mathbf{B} \times \mathbf{C})$.
2. A 120^{0} rotation carries the z-axis into the $y(=\bar{z})$ axis, y into $x(=\bar{y})$, and x into $z(=\bar{x})$, as shown in Figure 1.2. So $\bar{A}_{x}=A_{z}, \bar{A}_{y}=A_{x}, \bar{A}_{z}=A_{y}$. Hence

$$
R=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

3. By definition of divergence,

$$
\nabla \cdot \mathbf{v}=\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} v_{r}\right)=0
$$

So $\int_{\mathcal{V}} \nabla \cdot \mathbf{v} d \tau=0$. However,

$$
\oint_{\mathcal{S}} \mathbf{v} \cdot d \mathbf{a}=\frac{1}{R^{2}} R^{2} 4 \pi=4 \pi
$$

This result is surprising, because, the vector field is obviously diverging away from the origin, still $\nabla \cdot \mathbf{v}=0$ and the divergence theorem seems not to be satisfied! The answer is that $\nabla \cdot \mathbf{v}=0$ everywhere except at the origin, where the field \mathbf{v} blows up. In fact, $\nabla \cdot \mathbf{v}$ is infinite at origin, and zero elsewhere. So it can be written as

$$
\nabla \cdot \mathbf{v}=4 \pi \delta^{3}(\mathbf{r})
$$

which now satisfies the divergence theorem.
4. Two relations involving Delta functions are equal if

$$
\int_{-\infty}^{\infty} f(x) D_{1}(x) d x=\int_{-\infty}^{\infty} f(x) D_{2}(x) d x
$$

(a) Let $y \equiv k x \Rightarrow x=y / k$. Now

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) \delta(k x) d x & = \begin{cases}\int_{-\infty}^{\infty} f\left(\frac{y}{k}\right) \delta(y) \frac{d y}{k} & (k>0) \\
\int_{\infty}^{-\infty} f\left(\frac{y}{k}\right) \delta(y) \frac{d y}{k} & (k<0)\end{cases} \\
& =\frac{1}{|k|} \int_{-\infty}^{\infty} f\left(\frac{y}{k}\right) \delta(y) d y \\
& =\frac{1}{|k|} f(0) \\
& =\frac{1}{|k|} \int_{-\infty}^{\infty} f(x) \delta(x) d x
\end{aligned}
$$

Hence $\delta(k x)=\frac{1}{|k|} \delta(x)$.
(b)

$$
\int_{-\infty}^{\infty} f(x)\left[x \frac{d}{d x} \delta(x)\right] d x=\left.x f(x) \delta(x)\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} \frac{d}{d x}[x f(x)] \delta(x) d x
$$

The first term is zero, since $\delta(x)=0$ at $\pm \infty$. So the integral is

$$
-\int_{-\infty}^{\infty}\left[x \frac{d f}{d x}+f\right] \delta(x) d x=-f(0)=-\int_{-\infty}^{\infty} f(x) \delta(x) d x
$$

So $x \frac{d}{d x} \delta(x)=-\delta(x)$.
(c) The Heavyside step function is

$$
\Theta(x)= \begin{cases}1 & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

Hence

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) \frac{d \Theta}{d x} d x & =\left.f(x) \Theta(x)\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} \frac{d f}{d x} \Theta(x) d x \\
& =f(\infty)-\int_{0}^{\infty} \frac{d f}{d x} d x=f(\infty)-[f(\infty)-f(0)]=f(0) \\
& =\int_{-\infty}^{\infty} f(x) \delta(x) d x
\end{aligned}
$$

So $\frac{d \Theta}{d x}=\delta(x)$.

