PHYS 411

Discussion Class 10

09 November 2007

1. A copper penny is placed on edge in a vertical magnetic field $\mathrm{B}=2 \mathrm{~T}$. It is given a slight push to start it falling. Estimate how long it takes to fall. [The conductivity and density of Cu are $6 \times 10^{7} \Omega \mathrm{~m}^{-1}$ and $9 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$, respectively. Take the radius of the penny, $r_{0}=0.01 \mathrm{~m}$, and the initial angle between the plane of the copper penny and the vertical axis, $\left.\theta_{0}=0.1 \mathrm{rad}.\right]$
[Hint: Assume that in the falling process the magnetic torque is always in equilibrium with the gravitational torque.]
2. The Lorentz force law for a particle of mass m and charge q is

$$
\mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

(a) Show that if the particle moves in a time-independent electric field $\mathbf{E}=-\nabla \phi(x, y, z)$ and any magnetic field, then the energy $\frac{1}{2} m \mathbf{v}^{2}+q \phi$ is a constant.
(b) Suppose the particle moves along the x-axis in the electric field $\mathbf{E}=A e^{-t / \tau} \hat{\mathbf{x}}$, where A and τ are both constants, with no magnetic field along x-axis. Given the initial conditions $x(0)=0=\dot{x}(0)$, find $x(t)$.
(c) Using $x(t)$ found in (b), find whether $\frac{1}{2} m \mathbf{v}^{2}-q x A e^{-t / \tau}$ is a constant. Indicate briefly your reasoning.

Solution

1. Let θ be the angle between the plane of the copper penny and the vertical axis. When we are considering a ring of radii r and $r+d r$, the magnetic flux crossing the area of the ring is

$$
\phi(\theta)=\pi r^{2} B \sin \theta
$$

The induced emf in the ring is

$$
\varepsilon=\left|\frac{d \phi}{d t}\right|=\pi r^{2} B \cos \theta \dot{\theta}
$$

and the induced current is

$$
d I=\frac{\varepsilon}{R}=\frac{\pi r^{2} B \cos \theta \dot{\theta}}{R}
$$

where R is the resistance of the ring. Let h be the thickness of the penny. Then we have

$$
R=\frac{2 \pi r}{\sigma h d r}
$$

where σ is the conductivity of Cu . Thus

$$
d I=\frac{1}{2} B r \dot{\theta} \cos \theta \sigma h d r
$$

The magnetic moment of the ring is

$$
d m=\pi r^{2} d I=\frac{1}{2} \pi r^{3} B \dot{\theta} \cos \theta \sigma h d r
$$

and the magnetic torque is

$$
d \tau_{m}=|d \mathbf{m} \times \mathbf{B}|=d m B \cos \theta=\frac{1}{2} \pi r^{3} B^{2} \dot{\theta} \cos ^{2} \theta \sigma h d r
$$

If r_{0} is the radius of the penny, then the magnetic torque on the whole penny is

$$
\begin{equation*}
\tau_{m}=\int d \tau_{m}=\frac{1}{2} \pi B^{2} \dot{\theta} \cos ^{2} \theta \sigma h \int_{0}^{r_{0}} r^{3} d r=\frac{1}{8} \pi B^{2} \dot{\theta} \cos ^{2} \theta \sigma h r_{0}^{4} \tag{1}
\end{equation*}
$$

The gravitational torque on the other hand is given by

$$
\begin{equation*}
\tau_{g}=m g r_{0} \sin \theta=\pi r_{0}^{3} \rho g h \sin \theta \tag{2}
\end{equation*}
$$

Assuming that in the falling process the magnetic torque is always in equilibrium with the gravitational torque, i.e. $\tau_{m}=\tau_{g}$, we get

$$
\begin{equation*}
d t=\frac{B^{2} r_{0} \sigma}{8 g \rho} \frac{\cos ^{2} \theta}{\sin \theta} d \theta \tag{3}
\end{equation*}
$$

As the penny starts falling from at $\theta=\theta_{0}$, the total falling time is

$$
\begin{align*}
T & =\int d t=\frac{B^{2} r_{0} \sigma}{8 g \rho} \int_{\theta_{0}}^{\pi / 2} \frac{\cos ^{2} \theta}{\sin \theta} d \theta \\
& =\frac{B^{2} \sigma r_{0}}{8 g \rho}|\cos \theta+\ln [\tan (\theta / 2)]|_{\theta_{0}}^{\pi / 2} \\
& =\frac{B^{2} \sigma r_{0}}{8 g \rho}\left[-\cos \theta_{0}+\frac{1}{2} \ln \left(\frac{1+\cos \theta_{0}}{1-\cos \theta_{0}}\right)\right] \tag{4}
\end{align*}
$$

Using the given data, we have the estimate $T \approx 6.8 \mathrm{~s}$. We can conclude from this that the potential energy converts mainly into heat since the time required for falling in a strong magnetic field is much longer than the free-fall time $\left(T_{\text {free-fall }} \approx \sqrt{\frac{2 r_{0}}{g}} \simeq 0.045\right.$ s). This is because $T \propto \sigma$ and σ_{Cu} is very large (as Cu is a good conductor).
2. (a) We have to show that $\frac{1}{2} m \mathbf{v}^{2}+q \phi$ is a constant, i.e. $\frac{d}{d t}\left[\frac{1}{2} m \mathbf{v}^{2}+q \phi\right]=0$.

$$
\begin{align*}
& \frac{d}{d t}\left[\frac{1}{2} m \mathbf{v}^{2}+q \phi\right]=m \mathbf{v} \cdot \dot{\mathbf{v}}+q \frac{d \phi}{d t}=m \mathbf{v} \cdot \dot{\mathbf{v}}+q \mathbf{v} \cdot \nabla \phi \\
&=\mathbf{v} \cdot(m \mathbf{v}+q \nabla \phi)=\mathbf{v} \cdot(m \dot{\mathbf{v}}-q \mathbf{E}) \tag{5}\\
& \text { Now } \quad \mathbf{F}=m \dot{\mathbf{v}}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \\
& \Rightarrow \quad(m \dot{\mathbf{v}}-q \mathbf{E})=q(\mathbf{v} \times \mathbf{B}) \\
& \Rightarrow \quad \mathbf{v} \cdot(m \dot{\mathbf{v}}-q \mathbf{E})=q \mathbf{v} \cdot(\mathbf{v} \times \mathbf{B})=0 \tag{6}
\end{align*}
$$

So $\frac{d}{d t}\left[\frac{1}{2} m \mathbf{v}^{2}+q \phi\right]=0$.
(b) The magnetic force $\mathbf{F}_{m}=q(\mathbf{v} \times \mathbf{B})$ is perpendicular to \mathbf{v}; hence if the particle moves in the x-direction, the magnetic force will not affect the x-component of the motion. With \mathbf{E} in the x-direction the particle's motion will be confined in that direction. So

$$
\begin{array}{cl}
& m \ddot{x}=q E=q A e^{-t / \tau} \\
\text { i.e. } & m d v=q A e^{-t / \tau} d t \\
\text { With } & v(0)=0, \quad m v=-q A \tau e^{-t / \tau}+q A \tau \\
\text { or } & d x=q A \tau\left(1-e^{-t / \tau}\right) \frac{d t}{m} \\
\text { With } & x(0)=0, \quad x(t)=\frac{q A \tau}{m}\left[(t-\tau)+\tau e^{-t / \tau}\right] \tag{7}
\end{array}
$$

(c)

$$
\begin{aligned}
& \frac{1}{2} m v^{2}-q x A e^{-t \tau}=\frac{1}{2} m\left[\frac{q A \tau}{m}\left(1-e^{-t / \tau}\right)\right]^{2}-\frac{q^{2} A^{2} \tau}{m}\left[(t-\tau)+\tau e^{-t / \tau}\right] e^{-t / \tau} \\
\Rightarrow & \frac{d}{d t}\left(\frac{1}{2} m v^{2}-q x A e^{-t / \tau}\right) \neq 0
\end{aligned}
$$

This is because the electric field is not time-independent.

