07 December 2007

1. Consider a star traveling with speed v at an angle θ relative to our line of sight (see the figure). What is its apparent speed across the sky? What angle θ_{0} gives the maximum apparent speed? Show that the apparent speed can be much greater than the speed of light, even though v itself is always less than c.

[Hint: Suppose the light signal from point b reaches us at a time Δt after the signal from a, and the star has meanwhile advanced a distance Δs across the sky; then $u=\Delta s / \Delta t$ is the apparent speed. Show that as $v \rightarrow c, u \rightarrow \infty$.]
2. Let us consider a certain inertial frame \mathcal{S} in which the electric field \mathbf{E} and the magnetic field \mathbf{B} are neither parallel nor perpendicular, at a particular space-time point. Show that in a different inertial system $\overline{\mathcal{S}}$, moving relative to \mathcal{S} with velocity \mathbf{v} given by

$$
\frac{\mathbf{v}}{1+v^{2} / c^{2}}=\frac{\mathbf{E} \times \mathbf{B}}{B^{2}+E^{2} / c^{2}},
$$

the fields $\overline{\mathbf{E}}$ and $\overline{\mathbf{B}}$ are parallel at that point. Can there be any frame in which the fields are perpendicular?
[Hint: For simplicity, choose your axes so that $\mathbf{E}=(0,0, E) ; \mathbf{B}=(0, B \cos \phi, B \sin \phi)$. Use Eq. (12.108) to calculate $\overline{\mathbf{E}}$ and $\overline{\mathbf{B}}$ in the frame $\overline{\mathcal{S}}$ moving at speed v in the x direction.]

Solution

1.

$$
\begin{cases}\text { light signal leaves } a \text { at time } t_{a}^{\prime} ; & \text { arrives at earth at time } t_{a}=t_{a}^{\prime}+d_{a} / c, \\ \text { light signal leaves } b \text { at time } t_{b}^{\prime} ; & \text { arrives at earth at time } t_{b}=t_{b}^{\prime}+d_{b} / c\end{cases}
$$

Here d_{a} is the distance from a to earth, and d_{b} from b to earth. So

$$
\begin{aligned}
\Delta t & =t_{b}-t_{a}=t_{b}^{\prime}-t_{a}^{\prime}+\frac{d_{b}-d_{a}}{c}=\Delta t^{\prime}+\frac{\left(-v \Delta t^{\prime} \cos \theta\right)}{c}=\Delta t^{\prime}\left(1-\frac{v}{c} \cos \theta\right) \\
\Delta s & =v \Delta t^{\prime} \sin \theta=\frac{v \sin \theta \Delta t}{1-\frac{v}{c} \cos \theta} \\
\Rightarrow u & =\frac{\Delta s}{\Delta t}=\frac{v \sin \theta}{1-\frac{v}{c} \cos \theta}
\end{aligned}
$$

To find the angle at which u is maximum,

$$
\begin{aligned}
0= & \frac{d u}{d \theta}=\frac{v\left[\left(1-\frac{v}{c} \cos \theta\right)(\cos \theta)-\sin \theta\left(\frac{v}{c} \sin \theta\right)\right]}{\left(1-\frac{v}{c} \cos \theta\right)^{2}} \\
\Rightarrow \quad & \left(1-\frac{v}{c} \cos \theta\right) \cos \theta=\frac{v}{c} \sin ^{2} \theta \\
\Rightarrow \quad & \cos \theta=\frac{v}{c}, \text { or } \\
& \theta_{0}=\cos ^{-1}(v / c)
\end{aligned}
$$

At this angle,

$$
u_{0}=\frac{v \sqrt{1-v^{2} / c^{2}}}{1-v^{2} / c^{2}}=\frac{v}{\sqrt{1-v^{2} / c^{2}}}
$$

As $v \rightarrow c, u \rightarrow \infty$, even though $v<c$.
2. We choose the axes such that \mathbf{E} points in the z direction and \mathbf{B} in the $y z$ plane:

$$
\mathbf{E}=(0,0, E) ; \mathbf{B}=(0, B \cos \phi, B \sin \phi) .
$$

Using Eq. (12.108), the transfomred fields in the $\overline{\mathcal{S}}$ frame moving at speed v in the x direction:

$$
\overline{\mathbf{E}}=(0,-\gamma v B \sin \phi, \gamma(E+v B \cos \phi)) ; \overline{\mathbf{B}}=\left(0, \gamma\left(B \cos \phi+\frac{v}{c^{2}} E\right), \gamma B \sin \phi\right) .
$$

$\overline{\mathbf{E}} \| \overline{\mathbf{B}}$ provided

$$
\begin{aligned}
& \frac{E_{y}}{B_{y}}=\frac{E_{z}}{B_{z}} \\
\text { or } & \frac{-\gamma v B \sin \phi}{\gamma\left(B \cos \phi+\frac{v}{c^{2}} E\right)}=\frac{\gamma(E+v B \cos \phi)}{\gamma B \sin \phi}, \\
\text { or } & -v B^{2} \sin ^{2} \phi=\left(B \cos \phi+\frac{v}{c^{2}} E\right)(E+v B \cos \phi), \\
\text { or } & \frac{v}{1+\frac{v^{2}}{c^{2}}}=-\frac{E B \cos \phi}{B^{2}+E^{2} / c^{2}}
\end{aligned}
$$

Now $\mathbf{E} \times \mathbf{B}=-E B \cos \phi \hat{\mathbf{x}}$. So

$$
\frac{\mathbf{v}}{1+v^{2} / c^{2}}=\frac{\mathbf{E} \times \mathbf{B}}{B^{2}+E^{2} / c^{2}}
$$

There can be no frame in which $\mathbf{E} \perp \mathbf{B}$, for $(\mathbf{E} \cdot \mathbf{B})$ is invariant, and since it is not zero in \mathcal{S} it can't be zero in \bar{S}.

