PHYS 411

Discussion Class 7

19 October 2007

1. The induced dipole moment of a neutral atom is approximately proportional to the external electric field:

$$
\mathbf{p}=\alpha \mathbf{E}
$$

The constant of proportionality α is called atomic polarizability.
Now consider a hydrogen atom in its ground state. The electron cloud has a charge density

$$
\rho(r)=\frac{q}{\pi a^{3}} e^{-2 r / a},
$$

where q is the charge of the electron and a is the Bohr radius ($\equiv 0.5 \times 10^{-10} \mathrm{~m}$). Find the atomic polarizability of such an atom. (For comparison, the experimental value is $0.66 \times 10^{-30} \mathrm{~m}^{3}$.)
[Hint: First calculate the electric field of the electron cloud, $E_{e}(r)$. The nucleus will be shifted from $r=0$ to its equilibrium position d where $E_{e}=E_{\text {external }}$; expand the exponential in $E_{\text {external }}$, assuming $d \ll a$ and neglecting the higher order terms.]
2. The polarization in a linear dielectric is proportional to the field:

$$
\begin{equation*}
\mathbf{P}=\epsilon_{0} \chi_{e} \mathbf{E} \tag{1}
\end{equation*}
$$

If the material consists of atoms (or nonpolar molecules), the induced dipole moment of each atom is likewise proportional to the field:

$$
\begin{equation*}
\mathbf{p}=\alpha \mathbf{E} \tag{2}
\end{equation*}
$$

What is the relation between the atomic polarizability α and the susceptibility χ_{e} ?
[Hint: Since \mathbf{P} (dipole moment per unit volume) is \mathbf{p} (dipole moment per atom) times N (number of atoms per unit volume), the obvious guess will be

$$
\begin{equation*}
\epsilon_{0} \chi_{e}=N \alpha \tag{3}
\end{equation*}
$$

However, there is a subtle problem, for the field \mathbf{E} in Eq. 1 is the total macroscopic field in the medium, whereas the field in Eq. 2 is due to everything except the particular atom under consideration (by definition of atomic polarizability; see Problem 1); denote this field as $\mathbf{E}_{\text {else }}$. Assuming each atom to be a sphere of radius R, show that

$$
\begin{equation*}
\mathbf{E}=\left(1-\frac{N \alpha}{3 \epsilon_{0}}\right) \mathbf{E}_{\text {else }} \tag{4}
\end{equation*}
$$

Use this to obtain

$$
\begin{align*}
\chi_{e} & =\frac{N \alpha / \epsilon_{0}}{1-N \alpha / 3 \epsilon_{0}} \\
\text { or } \alpha & =\frac{3 \epsilon_{0}}{N}\left(\frac{\epsilon_{r}-1}{\epsilon_{r}+2}\right) \tag{5}
\end{align*}
$$

Solution

1. We calculate the field at radius r using Gauss's law:

$$
\oint \mathbf{E} \cdot d \mathbf{a}=\frac{Q_{\mathrm{enc}}}{\epsilon_{0}}, \text { or } E=\frac{Q_{\mathrm{enc}}}{4 \pi \epsilon_{0} r^{2}}
$$

The total charge enclosed within a radius r is given by

$$
\begin{aligned}
Q_{\mathrm{enc}} & =\int_{0}^{r} \rho d \tau=\frac{4 \pi q}{\pi a^{3}} \int_{0}^{r} e^{-2 \tilde{r} / a} \tilde{r}^{2} d \tilde{r} \\
& =\frac{4 q}{a^{3}}\left[-\frac{a}{2} e^{-2 \tilde{r} / a}\left(\tilde{r}^{2}+a \tilde{r}+\frac{a^{2}}{2}\right)\right]_{0}^{r} \\
& =q\left[1-e^{-2 r / a}\left(1+\frac{2 r}{a}+\frac{2 r^{2}}{a^{2}}\right)\right]
\end{aligned}
$$

(Note that $Q_{\mathrm{enc}}(r \rightarrow \infty)=q$.) So the field of the elctron cloud is

$$
E_{e}(r)=\frac{q}{4 \pi \epsilon_{0} r^{2}}\left[1-e^{-2 r / a}\left(1+\frac{2 r}{a}+\frac{2 r^{2}}{a^{2}}\right)\right]
$$

The proton in the nucleus will be shifted from $r=0$ to the point d where $E_{e}=E$ (the external field):

$$
E=\frac{q}{4 \pi \epsilon_{0} d^{2}}\left[1-e^{-2 d / a}\left(1+\frac{2 d}{a}+\frac{2 d^{2}}{a^{2}}\right)\right]
$$

Assuming $d \ll a$, we expand the exponential in powers of (d / a) :

$$
\begin{aligned}
e^{-2 d / a} & =1-\left(\frac{2 d}{a}\right)+\frac{1}{2}\left(\frac{2 d}{a}\right)^{2}-\frac{1}{3}\left(\frac{2 d}{a}\right)^{3}+\ldots \\
& =1-\frac{2 d}{a}+2\left(\frac{d}{a}\right)^{2}-\frac{4}{3}\left(\frac{d}{a}\right)^{3}+\ldots \\
1-e^{-2 d / a}\left(1+\frac{2 d}{a}+\frac{2 d^{2}}{a^{2}}\right) & =1-\left(1-\frac{2 d}{a}+2\left(\frac{d}{a}\right)^{2}-\frac{4}{3}\left(\frac{d}{a}\right)^{3}+\ldots\right)\left(1+\frac{2 d}{a}+\frac{2 d^{2}}{a^{2}}\right) \\
& =\frac{4}{3}\left(\frac{d}{a}\right)^{3}+\text { higher order terms. }
\end{aligned}
$$

So the external electric field is

$$
E=\frac{q}{4 \pi \epsilon_{0} d^{2}}\left(\frac{4}{3} \frac{d^{3}}{a^{3}}\right)=\frac{p}{3 \pi \epsilon_{0} a^{3}}
$$

with $p=q d$. So

$$
\alpha=3 \pi \epsilon_{0} a^{3} .
$$

This result predicts $\frac{\alpha}{4 \pi \epsilon_{0}}=\frac{3}{4} a^{3}=\frac{3}{4}\left(0.5 \times 10^{-10}\right)^{3}=0.09 \times 10^{-30} \mathrm{~m}^{3}$, compared to the experimental value $0.66 \times 10^{-30} \mathrm{~m}^{3}$. We can not expect a better result anyway in this classical picture. For a more sophisticated approach, see W.A. Bowers, Am. J. Phys. 54, 347 (1986).
2. The density of atoms is $N=\frac{1}{(4 / 3) \pi R^{3}}$ assuming no voids in the material (idealized case). The macroscopic field \mathbf{E} is $\mathbf{E}_{\text {self }}+\mathbf{E}_{\text {else }}$, where $\mathbf{E}_{\text {self }}$ is the average field ove the sphere due to the atom itself. From Eq. 3.105,

$$
\begin{aligned}
& \begin{aligned}
& \mathbf{E}_{\text {self }}=-\frac{1}{4 \pi \epsilon_{0}} \frac{\mathbf{p}}{R^{3}} \\
& \text { Now } \mathbf{p}
\end{aligned}=\alpha \mathbf{E}_{\text {else }} \Rightarrow \mathbf{P}=N \alpha \mathbf{E}_{\text {else }} . \\
\text { So } & \mathbf{E}
\end{aligned}=-\frac{1}{4 \pi \epsilon_{0}} \frac{\alpha}{R^{3}} \mathbf{E}_{\text {else }}+\mathbf{E}_{\text {else }}=\left(1-\frac{\alpha}{4 \pi \epsilon_{0} R^{3}}\right) \mathbf{E}_{\text {else }} .
$$

But $\chi_{e}=\epsilon_{r}-1$, so

$$
\alpha=\frac{3 \epsilon_{0}}{N}\left(\frac{\epsilon_{r}-1}{\epsilon_{r}+2}\right)
$$

This equation is known as the Clausius-Mossotti formula, or, in its application to optics, the Lorentz-Lorenz equation.

