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1. Since parallel currents attract, it is reasonable to think that the current within a
single wire should contract into a tiny concentrated stream along the axis. However
in practice the current typically distributes itself quite uniformly over the wire. How
do you account for this?

[Hint: Assume that the positive charges (having a uniform density ρ+) are at rest,
and the negative charges (having a uniform density ρ−) move at speed v. Balance
the magnetic attraction with the electric repulsion created by the accumulation of
these mobile charges near the axis. You should be able to show that in equilibrium
ρ− = −ρ+γ2, where γ is the usual gamma factor, (1 − v2/c2)−1/2 and c = 1/

√
µ0ε0

is the speed of light.]

2. A sphere of linear magnetic material is placed in an otherwise uniform magnetic field
B0. Find the new magnetic field inside the sphere.

[Hint: The formal (and rigorous) way to solve this problem is to set up the boundary
conditions and to use the Laplace solution for the magnetic potential. Here is an easier
alternative: B0 magnetizes the sphere and sets up a field B1 within it; B1 magnetizes
the sphere by an additional amount and sets up an additional field B2; and so on.
The total resultant field inside the sphere is the sum of these infinite number of fields.
(The sum is of course convergent as it should yield the same answer!)]
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Solution

1. The mobile charges do tend to line up near the axis, but the resulting concentration
of (negative) charges sets up an electric field that repels away further accumulation.
Equilibrium is reached when the electric repulsion on a mobile charge q balances the
magnetic attraction:

F = q[E + (v ×B)] = 0 ⇒ E = −(v ×B)

Let us assume the current to be in the z direction: J = ρ−vẑ (where ρ− and v are
both negative). The magnetic field is then given by

∮
B · dl = µ0Ienc ⇒ B2πs = µ0Jπs2

⇒ B =
µ0ρ−vs

2
φ̂

The electric field is given by
∮

E · da =
1
ε0

(ρ+ + ρ−)πs2l

⇒ E =
1

2ε0
(ρ+ + ρ−)sŝ

In equilibrium,

1
2ε0

(ρ+ + ρ−)sŝ = −
[
(vẑ)×

(µ0ρ−vs

2
φ̂
)]

=
µ0

2
ρ−v2sŝ

⇒ ρ+ + ρ− = ρ−(ε0µ0v
2) = ρ−

(
v2

c2

)

⇒ ρ+ = −ρ−

(
1− v2

c2

)
= −ρ−/γ2, or ρ− = −γ2ρ+.

In this naive model, the mobile negative charges fill a smaller inner cylinder, leaving
a shell of positive (stationary) charge at the outside; see D.C. Gabuzda, Am. J. Phys.
61, 360 (1993) for further discussion.

Note: For typical velocities the two charge densities are essentially unchanged by
the current (since γ ≈ 1). In plasmas, however, where the positive charges are also
free to move, this so-called pinch effect can be very significant.

2. B0 magnetizes the sphere:

M0 = χmH0 =
χm

µ0(1 + χm)
B0.

This magnetization sets up a field wihin the sphere given by Eq. 6.16:

B1 =
2
3
µ0M0 =

2
3
κB0 (where κ ≡ χm

1 + χm
).

2



Now B1 magnetizes the sphere an additional amount M1 = κ
µ0

B1. This sets up an
additional field in the sphere:

B2 =
2
3
µ0M1 =

2
3
κB1 =

(
2κ

3

)2

B0,

and so on. The total field is the sum of all these fields:

B = B0 + B1 + B2 + ...

= B0 +
(

2κ

3

)
B0 +

(
2κ

3

)2

B0 + ...

=
[
1 + (2κ/3) + (2κ/3)2 + ...

]
B0

=
B0

1− 2κ/3
=

(
1 + χm

1 + χm/3

)
B0.
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