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A Hopf bifurcation describes a transition from a steady state to an oscillatory one. This report describes how the presence
of white Gaussian noise in the term driving the instability (the gain) affects the character of such a transition. We find that
for small noise intensities the effective critical value of the bifurcation parameter increases linearly with the noise intensity.
This result is used to quantitatively describe the onset of the magneto-rotational instability in a laboratory experiment using
liquid metal with turbulent background flow.
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1 Introduction

A real physical system is always subject to random fluc-
tuations. This is particularly true in astrophysical and geo-
physical fluid dynamics where the presence of turbulence
is unavoidable in most practical cases. Because systems ex-
hibit transitions that are affected by turbulent fluctuations,
it is relevant to understand, both qualitatively and quantita-
tively, the role of these turbulent fluctuations in the tran-
sition. Additive perturbations have been described in de-
tail as a broadening or smoothing of the transition. If the
gain in the dynamical system fluctuates, more exotic phe-
nomena such as intermittent bursts (Sweet et al. 2001) may
evolve in pitchfork bifurcations with multiplicative (ampli-
fication) noise. Examples of phenomena where the back-
ground base state is highly turbulent at instability onset in-
clude the magneto-rotational instability (MRI) as reported
by Sisan et al. (2004) and the appearance of inertial waves
in a rapidly rotating spherical-Couette apparatus (Kelley et
al. 2007). Other examples include the gravity-wave bifurca-
tion in a free-surface Taylor-Couette flow (Mujica & Lath-
rop 2006), surface switching of rotating fluid in a cylinder
(Suzuki, Iima & Hayase 2006), and the well-known Belou-
sov-Zhabotinsky reaction (Guderian 1996). Turbulent fluc-
tuations are also studied in other kinds of instabilities like
the dynamo (Laval et al. 2006; Leprovost & Dubrulle 2005).
As many fluid and MHD instabilities arise from a (perhaps
weakly) turbulent background state, this issue may be im-
portant in many natural settings. As the background state is
the source of energy for the bifurcation, fluctuating back-
grounds effect a fluctuating gain for the new state. The ef-
fect of random fluctuations on Hopf bifurcations has been
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addressed in the past (Graham 1982) although the empha-
sis has been mathematical rather than physical. In this re-
port we opt for a simplified mathematical description of the
problem and apply it to a laboratory example.

A Hopf bifurcation describes the transition of a system
from a steady to an oscillating state as a control parame-
ter varies. Contained in the control parameter is information
describing how the system will react to the external forcing.
We will consider the turbulent background influencing the
control parameter itself (see Pétrélis & Aumaı̂tre, 2006, and
references therein).

Consider a dynamical system that has a single real con-
trol parameter µ and a single stable fixed point when µ <
µc. A Hopf bifurcation occurs if by increasing µ past its
critical value µc the fixed point loses stability and a limit
cycle appears (Guckenheimer & Holmes 1983). Assuming
µc = 0 for simplicity, the normal form describing a Hopf
bifurcation in polar coordinates is

ṙ = µr + ar3, (1)

θ̇ = ω + br2,

where r, θ represent the state of the system, a is the first
Lyapunov exponent (a < 0 for a supercritical bifurcation),
ω �= 0 and b is arbitrary. The steady state solution for the
supercritical case a = −1 corresponds to oscillations with
constant amplitude r =

√
µ and angular frequency ω. In the

following sections we will study the effect of multiplicative
noise on such a bifurcation model. Since we will be deal-
ing with stochastic fluctuations, a statistical description is
in order, i.e., a probability density enabling us to calculate
averages will be found.

In Sects. 2 and 3 we will outline the technique used
to find an appropriate probability density function. We will
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show analytically in Sect. 3 and numerically in Sect. 4 that
the effective critical value of the bifurcation parameter in-
creases linearly with noise strength for small noise intensi-
ties. Section 5 describes how the theory can be used using
as an example a laboratory experiment displaying a Hopf
bifurcation triggered by the MRI on a turbulent flow back-
ground.

2 Multiplicative noise

To study the influence of a fluctuating control parameter on
the transition we write Eq. (1) as

ṙ = [µ + ν(t)]r + ar3, (2)

where ν(t) is the so-called Langevin force having the fol-
lowing properties:

〈ν(t)〉 = 0, 〈ν(t)ν(t′)〉 = q δ(t − t′),

where 〈〉 denotes a time average and q is a positive num-
ber. The Langevin force ν(t) has therefore the properties
of white Gaussian noise with strength q. This way of in-
corporating noise into the equations is called multiplicative
because the noise term appears multiplying the dynamical
variable r. Note that a noise term with zero mean as an ex-
tra additive term in Eq. (1) makes little physical sense unless
r is allowed to have negative values. In such case Eq. (1)
would describe then a pitchfork bifurcation. For sake of sim-
plicity we will consider in the following multiplicative noise
with zero mean only.

A general non-linear differential equation of one real
variable ξ with multiplicative noise can be written as

ξ̇ = h(ξ, t) + g(ξ, t)ν(t). (3)

This is known as the non-linear Langevin equation (Risken
1996). The radial part of the (supercritical, a = −1) Hopf
normal form with multiplicative noise (2) would then be a
non-linear Langevin equation on the variable r with func-
tions h(r, t) and g(r, t) defined as

h(r, t) = µr − r3, g(r, t) = r. (4)

Our goal is to know the behavior of 〈r〉 as a function
of both the control parameter µ and the noise strength q.
For this purpose we will need a partial differential equa-
tion governing the probability density function for r, de-
noted W (r, t), that corresponds to the dynamics described
by the non-linear Langevin equation.

3 The Fokker-Planck equation

A partial differential equation for W (r, t) using the
Stratonovich interpretation (Stratonovich 1968) can be writ-
ten as

∂tW (r, t) =
∞∑

n=1

(−∂r)
n

[
D(n)(r, t)W (r, t)

]
,

where Dn are Kramers-Moyal coefficients and defined as
(Kramers 1940; Moyal 1949)

D(n)(r, t) =
1
n!

lim
τ→0

〈[ξ(t + τ) − r]n〉
τ

∣∣∣∣
ξ(t)=r

.

Here ξ(t+ τ)(τ > 0) is a solution of Eq. (3) which at time t
has the sharp value ξ(t) = r. This is known as the Kramers-
Moyal forward expansion and if D(n)(r, t) = 0 for n ≥ 3
it is called the Fokker-Planck or forward Kolmogorov equa-
tion (Risken 1996). In the case of a non-linear Langevin
equation it leads to a Fokker-Planck type equation

∂tW = −∂r

[
D(1)W

]
+ ∂2

r

[
D(2)W

]
.

The stationary solution (Risken 1996) for W (r, t) is given
by Wst(r) = N e−Φ(r), where N is a normalization con-
stant and Φ(r) is

Φ(r) = ln D(2)(r) −
∫ r D(1)(r′)

D(2)(r′)
dr′.

The coefficients D(1) and D(2) are easily calculated:

D(1)(r) = h(r) + g(r)
dg(r)
dr

q

2
,

D(2)(r) = g2(r)
q

2
.

Stated explicitly, the equation we want to solve is

ṙ = [µ + ν(t)]r − r3, (5)

and using Eq. (4) it is straightforward to show that the sta-
tionary probability density is

Wst(r) = 2
N

q
r

2µ
q −1 exp

(−r2

q

)
, (6)

where the normalization constant N is given by:

N =
q1−µ

q

Γ(µ/q)
.

In the expression above Γ(µ/q) refers to the Gamma func-
tion. The ensemble average of r is then simply

〈r〉 =
∫ ∞

0

r Wst(r) dr =
√

q
Γ(1

2 + µ
q )

Γ(µ/q)
. (7)

To see that this result reduces to the expected 〈r〉 → √
µ

when q → 0 we note that the expression Γ(J + 1
2 )/Γ(J)

can be written as an asymptotic series

Γ(J + 1
2 )

Γ(J)
=

√
J

(
1 − 1

8J
+

1
128J2

+ · · ·
)

. (8)

Identifying J as µ/q the expression above clearly leads to
the expected result when J � 1. If we keep terms up to first
order in q/µ then we can write

〈r〉2 = µ − q

4
. (9)

This tells us that for small amplitude fluctuations the bifur-
cation curve for 〈r〉2 is essentially the same as in the case of
a noise-free bifurcation, only shifted to the right an amount
q/4. We will discuss the implications of this result in Sect.
5.
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4 Numerical tests

The Langevin force is usually characterized by its Power
Spectral Density S(ω) which can be calculated from the
auto-correlation function R(t) by using the Wiener-
Khintchine Theorem:

R(t) ≡ 〈ν(t′)ν(t′ − t)〉
= lim

τ→∞
1
2τ

∫ τ

−τ

ν(t′)ν(t′ − t) dt′

= q δ(t)

S(ω) =
∫ ∞

−∞
R(t)e−iωt dt = q.

When using discrete time sampling the correlation function
R(t) is defined only for discrete times. With a time interval
T between samples we can define a function RT (t) defined
for continuous t such that
∫ ∞

−∞
RT (t) dt =

∞∑
n=−∞

R(nT )T.

A recipe for this is

RT (t) ≡ T
∞∑

n=−∞
R(nT )δ(t − nT ).

The power spectral density S(ω) calculated from RT (t) is
therefore

S(ω) = Tσ2,

where σ is the standard deviation of the Gaussian noise.

We implemented numerical tests using a fourth-order
Runge-Kutta integrator with fixed time step h. Noise was
injected every nth step using a Gaussian random number
generator with standard deviation σ. The resultant power
spectral density is then

q = nhσ2.

Data on Figs. 1 and 2 were produced using h = 0.25 and
n = 4 with varying σ.

Figure 1 compares bifurcation curves calculated from
Eq. (7) with numerical computation. The agreement is sat-
isfactory. It can be seen that the sharp transition at the bifur-
cation becomes smoother as the noise intensity is increased.
If turbulence can be modelled as white Gaussian noise, this
implies that experiments with appreciable background tur-
bulence will not exhibit a sharp transition to an oscillating
state.

Also of interest is the spread of r after long times, i.e.,
the probability density Wst. Figure 2 compares the analyti-
cal result (6) to the probability density calculated from the
numerical tests. As the noise intensity decreases, the prob-
ability density sharpens, eventually becoming a Dirac-δ for
q = 0.
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Fig. 1 (online colour at: www.an-journal.org) Squared average
of r after 40 000 integration steps using a random initial condition
between 0 and 0.1. The average was taken out of 5000 numerical
runs, one for each random initial condition. Continuous lines are
based on Eq. (7).
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Fig. 2 (online colour at: www.an-journal.org) Stationary proba-
bility density Wst(r) for µ = 0.01 and different values of noise
intensity. Continuous curves correspond to Eq. (6). Symbols and
colors are the same as in Fig. 1.

5 The magneto-rotational instability

One hydromagnetic process that exhibits a Hopf type of bi-
furcation is the the magneto-rotational instability (MRI). It
is of great importance in astrophysics where it gives a rea-
sonable picture of the accretion mechanism in thin accretion
disks, and considerable effort has been put forth to achieve
the MRI in a laboratory experiment (Stefani et al. 2006).
For a detailed description of the theory see Balbus & Haw-
ley (1991).

The laboratory experiment performed by Sisan et al.
(2004) to study the MRI is sketched in Fig. 3. In this setup,
liquid metal (sodium) fills the space between an inner cop-
per sphere and an outer spherical vessel. The inner sphere
is able to rotate, and a uniform magnetic field is applied in
the axial direction. An array of hall probes (oriented to mea-
sure magnetic fields in the cylindrical radial direction, thus
avoiding saturation by the applied axial field) is just out-
side the spherical vessel to measure the field induced by the

www.an-journal.org c© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Fig. 3 (online colour at: www.an-journal.org) The 30 cm sodium
experiment. A 10 cm diameter copper inner sphere immersed in
liquid sodium is rotated as an external magnetic field (up to 0.2 T)
is applied parallel to the rotation axis.

Fig. 4 (online colour at: www.an-journal.org) Time series of the
Gauss coefficients of the O1 mode at a point on the spherical ves-
sel. Red and green curves represent cos and sin components re-
spectively. The velocity along a chord using ultrasound is shown
in black.

flow. An ultrasound probe measures directly the flow along
one chord.

The hydrodynamic Reynolds number for this setup is
defined as Re = Ωab/ν where Ω is the rotation rate (in
rad/s) of the inner sphere, b = 5 cm is the inner sphere
radius, a = 15.6 cm is the spherical vessel radius and ν =
7.39 × 10−3cm2/s is the kinematic viscosity of sodium at
120◦C. Other important dimensionless parameters are the
magnetic Reynolds number, Rm, related to Re through

η Rm = ν Re,

where η 	 830 cm2/s is the magnetic diffusivity of sodium,
and the Lundquist number

S =
aB

η
√

ρµ0
,

where B is the applied axial field intensity, ρ = 0.927 g/cm3

is the sodium density and µ0 = 4π × 10−7N/A2 is the per-
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Fig. 5 (online colour at: www.an-journal.org) Variance of the
experimentally observed oscillations in the magnetic field vs. the
applied field intensity. The straight line is a linear fit with slope
s = 0.1598 mT. Continuous line is a noisy Hopf model with q =
0.046.

meability of free space. In the experiment 105 < Re < 107,
indicating that the flow is in a highly turbulent regime.

Sisan et al. (2004) found that when the inner sphere ro-
tates at fixed Ω and the applied magnetic field is increased
past some critical value Bc, oscillations are spontaneously
excited in the coupled magnetic and velocity fields as evi-
denced by the hall probe array and ultrasound probe mea-
surements shown in Fig. 4. The overall oscillation corre-
sponds to a precessing pattern with azimuthal wave number
m = 1. This mode is odd with respect to reflection about
the origin and therefore labeled O1.

The threshold Bc depends on Ω defining bifurcation
boundaries in the (B, Ω) parameter space or equivalently,
in the (S, Rm) space as shown in Fig. 6. For a fixed rotation
rate and starting from turbulent background the mode O1
appears when S is increased past the value defined by the
bifurcation boundary.

The transition to an oscillatory state can be better stud-
ied at higher rotation rates (Rm ∼ 25) where the induced
field is stronger. A plot of the variance of the induced mag-
netic field (which is proportional to the squared oscillation
amplitude when a definite mode dominates) as the applied
magnetic field is varied is shown in Fig. 5. There is a linear
trend from 45 mT to 80 mT as expected from a Hopf bi-
furcation model in which r represents the amplitude of the
oscillating magnetic field. There is a deviation from an ideal
Hopf normal form near the transition due to turbulent fluctu-
ations in the fluid. The slope discontinuity one would expect
in a noise-free Hopf bifurcation is absent; rather, the slope
changes continuously, consistent with a noisy Hopf bifurca-
tion model. For magnetic fields higher than 80 mT satura-
tion effects take place and the Hopf approximation breaks
down.

The results from Sect. 2 allow for a satisfactory descrip-
tion of the bifurcation near the transition. We establish first
a critical Bc by the intersection of a linear fit with the hori-
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Fig. 6 (online colour at: www.an-journal.org) Phase diagram of
the spontaneously excited states. Regions are defined by the mode
with the largest oscillation amplitude. The states have regions as-
sociated with background turbulence (tb), mode O1 dominated, E0
dominated, followed by O1, E1, O2, and E2 modes. Also shown
are theoretical stability boundaries for the longest wavelength (red)
and second longest wavelength (blue) instabilities, calculated from
the magneto-rotational dispersion relation.

zontal axis. This provides a quantitative definition for onset.
In order to find the appropriate noise intensity q in Eq. (7)
to fit the experimental data we need to use a properly scaled
bifurcation parameter µexp defined by
µexp ≡ s (B − Bc)λ,

where s = 0.1598 mT is the slope of the linear fit on the ex-
perimental data and λ is an arbitrary scaling factor. By set-
ting λ = 10 000 T−2 we map the horizontal axis in Fig. 5 to
approximately the same range as in Fig. 1. The experimen-
tally measured variance is to be accordingly scaled with the
same factor λ. In this way the analytical and experimental
data can be compared directly. Recalling Eq. (9), it is pos-
sible to define a linear fit to the family of analytical curves
in Fig. 1. In analogy to the linear fit in Fig. 5, each linear fit
will intersect the horizontal axis at µc = q/4. Using a new
variable µq ≡ µ − µc we can then find the analytical curve
that best fits the data, yielding q = 0.046. We predict then
that the critical parameter will increase linearly with q for
small q/µ, or in other words, that the value of Bc needed
for the MRI to set in will increase linearly with the mag-
netic Reynolds number Rm. In fact, this is precisely what
is observed experimentally. Figure 6 shows that the primary
O1 mode, starting from a fully turbulent background state,
appears at a linearly increasing Lundquist number S with
increasing Rm, a feature not predicted without noise fluctu-
ations.

6 Discussion

The presence of fluctuations do not seem to alter the Hopf
transition in a fundamental way. In fact we can say the MRI

induced bifurcations are robust under turbulent fluctuations
as evidenced experimentally and suggested analytically by a
noisy Hopf model. The presence of turbulence merely shifts
the critical value of the bifurcation parameter. A turbulence-
free system in the supercritical regime can be brought to
a steady state with no oscillations by injecting an appro-
priate amount of noise. Since Rm is a measure of the tur-
bulence present in the system, the fact that the experimen-
tally measured critical curve for the primary instability de-
viates slightly from a vertical is consistent with the picture
of turbulence-shifted criticality.

7 Summary

The effect of multiplicative noise on Hopf bifurcation was
studied both analytically and numerically with consistent
results. An experimental realization of a noisy Hopf bifur-
cation was described and the analytical results were used
to describe experimental data. We showed that the MRI-
induced transition from a steady to an oscillatory state with
preexisting turbulent background can be both qualitatively
and quantitatively be described by a Hopf bifurcation model
with multiplicative noise. The model reproduces the smooth
change in slope of the oscillation amplitude as the applied
magnetic field is increased and also explains the linear
growth of the critical Lundquist number S with increasing
magnetic Reynolds number Rm.
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