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Blowout bifurcations and the onset of magnetic dynamo action *
David Sweet, Edward Ott,†,a) Thomas M. Antonsen, Jr.,a) and Daniel P. Lathrop
Institute for Plasma Research and Department of Physics, University of Maryland, College Park,
Maryland 20742

John M. Finn
Los Alamos National Laboratory, Los Alamos, New Mexico 87544

~Received 6 October 2000; accepted 17 November 2000!

This paper numerically investigates the magnetohydrodynamic equations in three dimensions with
periodic boundary conditions in a parameter range where a forced fluid flow is chaotic. It is found
that the transition todynamo action, whereby the magnetic field is sustained by interaction with the
forced flow, is ablowout bifurcation. The blowout bifurcation is typified by bursting behavior, or
‘‘on-off intermittency.’’ In particular, near the transition there are short, intermittently occurring
bursts of strong magnetic field activity where the total magnetic energy is comparable to the total
flow kinetic energy. Between these bursts the magnetic energy is very small. As one approaches the
transition from the dynamo-active side, the time between bursts becomes longer and longer,
approaching infinity at the transition. Numerical verification is given for the presence of signature
scaling laws in numerical computations utilizing a pseudospectral model with triply periodic
boundary conditions. This work implies specific testable predictions for experimental dynamos.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1342228#
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I. INTRODUCTION

It is believed that the magnetic fields of the Earth a
Sun are created bydynamo action, whereby the kinetic en-
ergy of a convection-driven flow of an electrically conduc
ing fluid is converted into magnetic energy.1 This system,
called amagnetohydrodynamic (MHD) dynamo, has been the
subject of intense study.2–8

A number of groups are pursuing experimental progra
aimed at the realization of dynamo action in t
laboratory.9–14 The efforts in Riga9 and Karlsruhe10 self-
generate in constrained geometries which severely limit
turbulent fluctuations by internal walls. Other efforts,
Cadarache,11 Madison,12 Socorro,13 and College Park,14 have
~or are planned to have! relatively unconstrained stirre
flows in liquid sodium with typical hydrodynamic Reynold
numbers of R;107 leading to a vigorous turbulent flow. Th
transition to dynamo action in these unconstrained syst
will be strongly influenced by the turbulent character of t
flow.

It is to be expected that as the forcing and/or size of s
experiments is increased or the geometry is made more
vorable, a transition to dynamo action will be achieved. T
object of this article is to investigate what the character
this transition will be. We find that a likely scenario is th
the transition to dynamo action will be via a type of bifurc
tion called ablowout bifurcation, one which has been studie
in other settings.15–24 Based on this, it is to be expected th
the transition will be characterized by intermittently bursti
magnetic fields which obey scaling laws~explained subse
quently! near the transition. In particular, near the transiti
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there are short, intermittently occurring bursts of strong m
netic field activity where the total magnetic energy is co
parable to the total flow kinetic energy. Between these bu
the magnetic energy is very small. As one approaches
transition from the dynamo-active side, the time betwe
bursts becomes longer and longer, approaching infinity at
transition. This is illustrated by the results in Figs. 1~a! and
1~b! from our three-dimensional numerical dynamo comp
tation ~described in Sec. III!, which showsb(t) ~a global
measure of the magnetic field strength, see Sec. IV! versus
time for two parameter values just past the onset of dyna
action. The parameter value of Fig. 1~b! is closer by a factor
of 2.5 to the critical onset value than is the parameter va
of Fig. 1~a!. Correspondingly, we observe that bursting
less frequent in Fig. 1~b! than in Fig. 1~a!. The previous
discussions of blowout bifurcations have occurred in
context of chaotic dynamical systems. For the purposes
our discussion, and to make contact with the language u
in previous discussions of blowout bifurcations, we shall
fer to a turbulent fluid flow as chaotic.~While chaos is often
thought of as resulting from low-dimensional systems, a
turbulence is often thought of as being ‘‘high dimensiona
or as possessing ‘‘many active degrees of freedom,’’ t
distinction is not necessary in the present context.!

In our studies we use the following nondimension
MHD equations:

]v

]t
1~v•“ !v52“p1R21

“

2v1~“3B!3B1F~x!,

~1!

]B

]t
1~v•“ !B5~B•“ !v1Rm

21
“

2B. ~2!

Equation~1! is the Navier–Stokes equation with addition
terms representing the Lorentz force and an external fo
4 © 2001 American Institute of Physics
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1945Phys. Plasmas, Vol. 8, No. 5, May 2001 Blowout bifurcations and the onset of magnetic dynamo action
and Eq.~2! is the magnetic induction equation, derived fro
Faraday’s law, Ampere’s law, and Ohm’s law, and the
sumption that the fluid is incompressible:

“•v50. ~3!

The parameters R and Rm are the hydrodynamic and mag
netic Reynolds numbers. The external forceF~x! in ~1! is
described in Sec. III.

II. BACKGROUND

The bifurcation we are discussing is the transition from
nondynamo system~i.e., the total magnetic energy alway
decays to zero! with chaotic time variation of the flow field
to a dynamo system with chaotic time variation of the flo
and the magnetic energy.

The most striking feature of this type of bifurcation
bursting~so-called on–off intermittency!.15,17–23In our sys-

FIG. 1. ~a! b(t) vs t, wheret is in units of 104 time steps. The trace ofb(t)
bursts when the magnetic Reynolds number, Rm58.06, is slightly above the
transition value. A burst is defined as the time whenb(t) crosses a threshold
value~shown here atb050.8 by a horizontal line!. ~b! A similar figure with
Rm57.96, closer to the transition value of Rmc'7.88 ~but still above tran-
sition!. Note that the maximum value ofb is about 2.5 whilev̄ is of the same
order~from Fig. 6, typically about 5!, implying that the magnetic energy a
nonlinear saturation is of the order of the flow kinetic energy.
-

a

tem we observe bursting of the magnetic energy when~a! the
magnetic Reynolds number is just above the transition va
~Fig. 1! or ~b! the magnetic Reynolds number is just belo
the transition value and a small external magnetic field
applied to the system~Fig. 2!.

We now give some background on blowout bifurcation
We consider a dynamical set of equations evolving the s
tem state forward in time. We imagine a given state of
system to be a point in the phase space of the system.
example, in the dynamo context, the dynamical system
Eqs.~1!–~3! plus boundary conditions, and the system st
at timet is given by the vector fieldsv(x,t) andB(x,t) ~i.e.,
by the magnitudes and directions ofv andB at each point in
space!. Thus, the phase space is, in principle, infinite dime
sional ~a function space!.

Attributes which characterize a system possessin
blowout bifurcation are as follows.~i! There is an invariant
manifold in the phase space of the system.@By an invariant
manifold we mean a subset of the phase space where
subset is a smooth hypersurface such that if an initial con
tion ~state! is placed on the hypersurface, then the sub
quently evolving state remains on the hypersurface for
time.# ~ii ! Initial conditions placed on the invariant hypersu
face evolve to chaotic solutions~i.e., there is a chaotic attrac
tor for such initial conditions!. ~iii ! For parameter values
below the critical value at which the blowout bifurcatio
occurs~in the context of the dynamo, Rm,Rmc , where Rmc

is the critical magnetic Reynolds number!, the chaotic mo-
tion in the invariant manifold is attracting in the full phas
space in the sense that almost all infinitesimal perturbati
of the chaotic motion in the directions transverse to the
variant manifold decay exponentially in a suitable avera
sense. Here, by this we mean that the Lyapunov expon
for perturbations from the chaotic attractor in the invaria
surface are negative when those perturbations are transv
to the invariant surface.~iv! As a parameter value increase
through the critical blowout value~e.g., Rm increases through

FIG. 2. b(t) vs t. When the magnetic Reynolds number, Rm57.81, is
slightly below the transition value and a small external magnetic field
applied,B051.631023, b(t) displays intermittent bursting.@When no ex-
ternal field is applied,b(t) does not show sustained burst activity, bu
rather, eventually decays to zero.#
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Rmc) one of the transverse Lyapunov exponents increa
from negative values~for Rm,Rmc) to positive values~for
Rm.Rmc). Thus, the chaotic attractor for initial condition
in the invariant manifold loses its average stability to tra
verse perturbations.@While we refer to chaos on the invarian
manifold, we should note that the role of chaos in the blo
out bifurcation can be replaced by suitable~nondeterminis-
tic! stochastic processes with no essential change in
blowout bifurcation phenomena~see Sec. IV A and Refs. 1
and 20!.#

The presence of an invariant mainfold allows one to
fine local transverse variables~i.e., variables measuring th
distances locally orthogonal to the manifold! and approxi-
mate their dynamics near the manifold as linear. The
manifold motion generically influences the transverse v
ables by altering their growth rates. That is, small transve
displacements from a state on the invariant manifold gen
cally increase or decrease at different local, linear grow
rates depending on where the state is located on the inva
manifold. Since the motion on the invariant manifold is ch
otic, these local, linear growth rates are changed in an ef
tively random manner. This situation for small deviatio
from the invariant manifold, coupled with nonlinearity fo
large transverse deviations, implies various signature sca
laws ~discussed in Sec. IV!15,17,19–22which are characteristic
of blowout bifurcations.

We now discuss how the problem of MHD dynamo o
set corresponds to conditions~i! and~ii ! for a blowout bifur-
cation. SettingB50 we obtain the usual Navier–Stoke
equations~the Lorentz force term is zero forB50!. In par-
ticular, B50 is a solution of~2!, and this represents an in
variant manifold in the fullB2v phase space. Thus, cond
tion ~i! for a blowout bifurcation is satisfied. For sufficient
large fluid Reynolds number, R, the~magnetic field-free!
Navier–Stokes equations are typically turbulent. That is,
system evolution is chaotic on the invariant manifoldB50
@condition ~ii !#.

With respect to conditions~iii ! and ~iv!, refer to Fig. 3,
which shows the results of numerical computations of
largest transverse Lyapunov exponenth versus Rm , with R
and F~x! chosen so thatv behaves chaotically in time~see
Sec. III for details!. The transverse Lyapunov exponent
denotedh and is computed by settingB50 in ~1! ~the Lor-
entz force is quadratic inB and hence is absent to linea
order! and solving the resulting set of equations~1!–~3! for
the linear evaluation of the magnetic field perturbationdb.
~This problem is commonly referred to as the kinematic d
namo problem.2–4,6–8! We see from Fig. 3 that as Rm is in-
creased there is a transition from negativeh to positive h.
The value of Rm at which this transition occurs is the critica
value for dynamo onset Rmc . Below Rmc , initial magnetic
field perturbations all eventually decay to zero@condition
~iii !#. Note, however, that for Rm,Rmc , although there is
always eventual decay toB50 ~i.e., to the invariant mani-
fold!, the magnetic field time evolution may show fini
stretches of time where growth takes place. For Rm.Rmc ,
infinitesimal perturbations fromB50 tend to grow on aver-
age@condition~iv!#, and our fully nonlinear numerical com
es
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putations of solutions of Eqs.~1!–~3! indicate strongly fluc-
tuating large magnetic fields persisting for all time~Fig. 1!.

We emphasize the difference between the finite ti
magnetic field instability growth rate~or Lyapunov expo-
nent! and its infinite time limit. Specifically, for a particula
t50 infinitesimal perturbation,db~x,0!, the finite time
Lyapunov exponent for the time intervalt to t1t is

ht„db~x,0!,t…5
1

t
ln@ idb~x,t1t!i /idb~x,t !i # ~4!

and the infinite time exponent is

h5 lim
t→`

ht„db~x,0!,t…. ~5!

Note that the infinite time exponent is presumed to be
same for all choices oft and almost all choices of the initia
perturbationdb~x,0!. Thus, the infinite time exponent has
definite numerical value. The finite time exponent, in co
trast, fluctuates witht. One experimental group14 has mea-
sured the probability distribution for these fluctuating fin
time exponentsht . They do this by applying a magneti
pulse of fixed strength and fitting a straight line to a semi
plot of the measured, decaying magnetic field strength ve
time over a time interval of lengtht. ht is the slope of this
line. ~Because their experimental Rm is relatively far below
Rmc , theht values they determine are all negative.! Repeat-
ing this many times they obtain many values ofht from
which they construct, via the histogram method, their exp
mental probability distribution function. This distribution i

FIG. 3. Transverse Lyapunov exponent~h! as a function of magnetic Rey
nolds number, Rm . The data points were calculated from 572 kinema
LOM simulations@i.e., linearized simulations in which the Lorentz force o
the right-hand side of Eq.~1! is omitted# started from independent, random
initial conditions, using various values of Rm . The estimate ofh for a given
value of Rm is taken to be the average of the straight-line fits to the plots
log b(t) vs t for all simulations~typically four! taken at a given value of Rm .
@The length of the simulations varied depending on the growth rate exp
enced by the magnetic field during that simulation. The magnetic field
allowed to grow tob(t)/b(0)>10300 for Rm.Rmc or decay tob(t)/b(0)
>102300, for Rm,Rmc where these limits are those of IEEE doubl
precision numbers.# The transition to dynamo action occurs as Rm passes
from Rm,Rmc.2.193 to Rm.Rmc .
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well fit by a Gaussian. This very graphically illustrates t
expected stochastic nature of the growth/decay of small m
netic field perturbations, and is one of the key aspects of
dynamics necessary for a blowout bifurcation. We also
such a distribution in our simulation~see Fig. 4!. In our
simulation~as in the experiment of Ref. 14! it is the chaotic
flow field ~i.e., motion on the invariant manifold! that gives
rise to the distribution.

III. COMPUTER SIMULATION

We use a pseudospectral method to simulate Eqs.~1!–
~3!, as described in Refs. 25–27, which consists of a se
first-order ordinary differential equations~ODEs! governing
the evolution of the coefficients of spatial Fourier expansio
of v(x,t) andB(x,t). We expand the solution to Eqs.~1!–~3!
@i.e., the pair of vectorsv(x,t) andB(x,t)# in truncated Fou-
rier series

v~x,t !5 (
kx52K

K

(
ky52K

K

(
kz52K

K

vk~ t !eik•x,

B~x,t !5 (
kx52K

K

(
ky52K

K

(
kz52K

K

Bk~ t !eik•x,

with truncation at mode numberK in each component ofk
~wherekx , ky , kz are integers!. The sets of solutions acces
sible to this method, therefore, are those for whichv andB
are spatially periodic with period 2p and have structures n
smaller than 2p/K.

The partial differential equations~PDEs! given by Eqs.
~1!–~3! then become the set of ODEs:

]vk

]t
52nuku2vk1fk1gk1Fk2k

k•~ fk1gk1Fk!

uku2
,

~6!
]Bk

]t
52luku2Bk1r k2sk,

where

FIG. 4. Probability distribution function,Q(ht), of finite-time transverse
Lyapunov exponents,ht , for t55 ~giving 578 samples! and Rm57.96,
slightly above transition, Rmc57.88. The average value ofht in this distri-
bution is ^ht&52.8031023. We estimate thatD50.02.
g-
e
e

of

s

f k,a52 i(
b

kb (
m1n5k

vm,bvn,a , ~7!

gk,a5 i(
b

kb (
m1n5k

Bm,bBn,a , ~8!

r k,a5 i(
b

kb (
m1n5k

vm,bBn,a , ~9!

sk,a5 i(
b

kb (
m1n5k

Bm,bvn,a , ~10!

where the final term in Eq.~6! is the form of2“p that is
required when one insists that condition~3! hold. The simu-
lation consists of evolving this set of Fourier coefficien
forward in time with a fourth-order, adaptive time-ste
Runge–Kutta integrator.

The nonlinear terms, Eqs.~7!–~10! are convolutions and
are evaluated when needed by transforming the variable
real space using a fast Fourier transform~FFT!, performing a
pointwise product, and transforming back to Fourier spa
using an inverse FFT.

The parameter values used were R56.32,K56, and Rm

was varied from 7.81 to 8.16. There are (2K11)321 ex-
cited k vectors which, forK56, yields 2196 excitedk vec-
tors. For the valueK56, the simulation is converged inK.
We tested for convergence by measuring the growth rat
the magnetic energy for a case with Rm512.6, somewhat
above Rmc , using the kinematic dynamo simulation~starting
from random initial conditions! at successive, increasing va
ues ofK. The results are shown in Fig. 5.

Due to the large amount of computation needed to ve
one of the scaling laws, a lower-order model~LOM!, with
K51, was employed for the purpose of comparison with t
scaling prediction. For all other purposes a higher-or
model withK56 ~HOM! was used.@While the LOM is not
converged, it shows the same qualitative and scaling beh
iors as found in the higher-order model~HOM!.#

FIG. 5. Magnetic field growth rate,h, vs largest mode in simulation,K. The
simulation appears to have converged atK56. All simulations for this fig-
ure were performed with Rm512.6.
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The forcing term,Fk, has the form

F~0,0,61!5
1
2 ~ ŷ7 i x̂ !,

F~61,0,0!5
1
2 ~ ẑ7 i ŷ !,

F~0,61,0!5
1
2 ~ x̂7 i ẑ!.

For B50, if the flow is assumed to be time independent, t
forcing yields the so-called ABC flow4,5,28 given by vk
5RFk /uku2. For R56.32, the ABC flow is unstable. Non
forced flow modes are coupled to the forced modes by
nonlinear term,fk, Eq. ~7!, and the resulting flow exhibits
Eulerian chaos. That is, the Fourier coefficientsvk(t) and
Bk(t) evolve chaotically in time. Figure 6 shows a trace
v̄[ASuvku2 versus time for, Rm57.88, a non-dynamo-actio
parameter value. This flow was verified to be chaotic
computing the largest Lyapunov exponent to behv52.92
.0. We definehv by

udvku;ehvt

for infinitesimal separations between initial conditions,dvk.
We computedvk by linearizing Eq.~1! with B50 and inte-
grating until udvku has grown by a factor of;10300. We
estimatehv by the slope of a straight line fit to a log-linea
plot of udvku vs t.

IV. PREDICTION AND RESULTS

A. Model for intermittent bursting

A convenient way to analyze blowout bifurcations
through a simple model which we will describe in wh
follows.15,21,22The motivation for using the simple model
that it is suspected that it yields the same phenomeno
and scalings as real situations. In the language of statis
physics, typical situations yielding blowout bifurcations a
in the same universality class as this model. Our numer
results and past work15,19,21,22support this hypothesis. Th

FIG. 6. Norm of the flow velocity versus time wherev̄[ASkuvku2. The
inset shows a much longer trace, 0,t,23104, showing that this behavior
persists for long times. We measured the largest Lyapunov exponent fo
trace to behv50.41, which, sincehv.0, shows that the motion is chaotic
This trace was taken from a fluid-only simulation with Reynolds num
R56.3.
s

e
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model uses a discrete time variable,t50,1,2,..., and ad-
vances a non-negative variableb̂t @analogous tob(t) in Fig.
1# forward in time by a linear stochastic rule

b̂t115h tb̂t ~11!

if b̂t11<1. Hereh t>0 is a growth factor randomly chose
at each timet according to some probability distributio
function. If ~11! ever givesb̂t11.1, thenb̂t11 is set equal to
one. This nonlinear aspect of the model reflects, for exam
the physical saturation mechanism in the dynamo wher
the maximum value attainable by the magnetic field ener
EB(t), is limited to be of the order of the total fluid flow
kinetic energy. Introducingzt5 log(1/b̂t) and j t5 log(ht),
Eq. ~11! yields a random walk inz>0,

zt115zt2j t , ~12!

with an impenetrable boundary atz50 ~from the upper
bound onb̂, b̂<1). For a given realization of the random
processj t , finite time ~t! Lyapunov exponents for~11! are
given by

ĥr5
1

t (
t5T

T1t

j t .

Evaluatingĥt for many values ofT, we can obtain a distri-
bution function forĥt @analogous to the distributionQ(ht) in
Fig. 4#. In the limit thatt→`, this distribution function ap-
proaches a delta function at the usual~infinite time!
Lyapunov exponent. That is, with probability one, a giv
realization of the random processj t yields

ĥ5 lim
t→`

ĥt

independent of the starting timeT @see also Eq.~5!#. For
finite t, however, there is a spread ofĥt values aboutĥ
which decreases to zero ast becomes large:

^~ ĥt2ĥ!2&;2D/t. ~13!

In Eq. ~13! the quantityD is the diffusion coefficient associ
ated with the random walk~12!, D5^j2&/2. We note that by
fitting a straight line tot2^(ht2h)2& vs t for our dynamo we
can use Eq.~13! to obtain a numerical estimate of the diffu
sion coefficient29 D for our problem~or any blowout bifur-
cation problem!. In particular, we use Eq.~4! and Eqs.~6!–
~10! linearized aboutB50 to computeht at fixedt and many
different timest. The variance of this collection ofht values
yields an estimate of̂(ht2^ht&)

2& and, via histogramming
we can also estimate the probability distribution functi
Q(ht) in Fig. 4.

Analysis of the simple model above yields results whi
we summarize in the next subsection.

B. Predicted scalings just above transition „RmÌRmc …

In Refs. 15, 17, and 19–22 various scaling relations
predicted for blowout bifurcations, all of which can be d
rived using the simple stochastic model of Sec. IV A. W

is

r
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summarize the blowout scaling results relevant to our stu
for Rm.Rmc , where in all cases it is presumed that (Rm

2Rmc)/Rm!1.
~1! Time average distance from the invariant manifo.

We define a magnetic field norm,b(t)[@SkuBku2#1/2

5@V21***VuB(x,y,z,t)u2dxdydz#1/2, whereV5(2p)3 is
the simulation volume. Thus,b(t) provides an instantaneou
global measure of the magnetic field activity over the sim
lation volume. The quantityb(t) is related to the total mag
netic energy,EB(t), by EB(t)51/2Vb(t)2. Alternatively,
b(t) is the Euclidean distance of the system state from
B50 invariant manifold. Let̂ b(t)& denote the time averag
of the bursting time seriesb(t) vs t ~see Fig. 1!. Then^b(t)&
is predicted15 to scale linearly with (Rm2Rmc),

^b~ t !&;~Rm2Rmc!/Rmc . ~14!

As (Rm2Rmc) increases from zero,̂b(t)& increases due to
the greater frequency of bursts, whilebmax, the maximum
value ofb(t) observed over a long time series consisting
many bursts, remains essentially constant.

~2! Fractality of the set of burst times. We define the
burst times as the set of times at whichb(t) crosses some
threshold valueb0 in the upward direction; see Fig. 1~a!
where the chosen threshold value is shown as a horizo
line, b5b0 . In general, we can choose the threshold to
someO(1) fractionb of bmax ~i.e.,b05bBmax) and the scal-
ings based on this thresholding@Eqs.~15!–~19!# are indepen-
dent of the choice ofb,1.

Imagine that we plot the burst times along thet axis
betweent50 and some very long timet5T, and then we
rescale this long time interval to the unit interval by norm
izing t to T. In that case, in the double limitT→` followed
by (Rm2Rmc)→01, the set of normalized burst times in th
unit interval is predicted22 to approach a fractal set with box
counting dimension

d5 1
2. ~15!

Without normalizing time and considering (Rm2Rmc) to be
small but nonzero, this corresponds to

N~dt !;~dt !2d, ~16!

where thet axis has been divided into segments of lengthdt,
andN(dt) is the number of these segments that is neede
cover the set of burst times. This scaling is valid in the ran

D21!dt!
D

h2 , ~17!

where h is the average transverse Lyapunov exponent
~5!.

~3! Distribution of interburst intervals. Let t j and t j 11

be two successive burst times as described above. Thjth
interburst interval is defined asD j5t j 112t j , and, given
many burst times, we can use the histogram procedur
obtain a probability distribution function for the interbur
intervals,P(D). This probability distribution is predicted to
have a23

2 power law form,

P~D!;D23/2, ~18!

in the range
s

-

e

f

tal
e

-

to
e

q.

to

D21!D!D/h2. ~19!

Note that the scaling ranges~17! and ~19! increase as the
transition is approached sinceh;(Rm2Rmc) ~see Fig. 3!.

~4! Probability distribution of b(t). Picking a time t
randomly from the range of times over a long time series
b(t), the value ofb(t) at that instant is a random variable
We denote the probability distribution function ofb by
P̂(b). Operationally,P̂(b) can be estimated by choosin
many random times and histogramming. It is predicted t
P̂(b) has a power law behavior inb

P̂~b!;bg, g5~h/D !21, ~20!

for b!bmax.
To summarize, Eq.~14! characterizes the scaling of th

bursting behavior with Rm . Equations~15!–~20!, in contrast,
address the characteristics of theb(t) time series at afixed
small value of (Rm2Rmc)/Rmc.0. Equations ~15!–~19!
characterize the bursts,30 while Eq. ~20! characterizes the
small magnetic fluctuations between bursts.

C. Results for R mÌRmc , above transition

The simulation results verifying the presence of the sc
ings given in Eqs.~14!–~20! are shown, respectively, in Figs
7–10.

Figure 7 shows the results of 112 simulations of t
LOM. The plot shows the linear behavior of the avera
value ofb(t) vs (Rm2Rmc)/Rm ~where Rmc52.193 for the
LOM! as predicted by Eq.~14!. The LOM was used becaus
the time to compute similar data for theK56 model~HOM!
was prohibitively long due to the necessity of doing lo
runs for many values of Rm . This is in contrast to verifying
the scalings~15!, ~18!, and~20! which require only a single
long run at one fixed value of Rm , and for which we have
been able to use our HOM. We note that the LOM and
HOM give the same results for the scalings~15!, ~18!, and
~20!, and we take this as evidence that the scaling~14!, veri-
fied in Fig. 7 with the LOM, should apply to the HOM a
well.

FIG. 7. ^b(t)&;(Rm2Rmc)/Rmc . The points are averaged over 112 sim
lations or a total of approximately 83106 samples ofb(t).
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Figure 8 showsN(dt) vs dt, for the HOM with Rm

57.96.Rmc57.88, plotted on a log-log scale. According
~15!–~17! this plot should be linear with slope2d52 1

2

~solid line in Fig. 8! in the range 1023!dt!1021 @Eq. ~17!#,
wheredt is normalized to the total running time. The data
this range appear to conform well to the scaling Eq.~16!.

In Fig. 9 we plot the probability distribution function o
interburst times versus the interburst time to show that
scaling Eq.~18! holds for the converged, HOM, system. Th
solid line in the figure has the theoretical slope of23

2, and
the extent of this line indicates the expected scaling ra
given in Eq.~19!. Our result is robust to the choice of thres

FIG. 8. Fractal dimension of the set of burst times above transition.
predicted scaling isN(dt);(dt)21/2, Eq. ~15!, for the range 1023!dt
!1021. The points markedd were computed by measuring burst time
from four simulations with a total aggregate running time of approximat
63104 time units (dt is normalized by the total running time! using a
threshold ofb050.79, at parameter Rm57.96.

FIG. 9. Distribution of interburst times slightly above transition (Rm

57.96.Rmc). The predicted scaling isP(D);D23/2, Eq. ~18!. The points
markedd were computed by measuring burst times from the traces wi
total running time of approximately 7000 time units using a threshold
b050.8 @see Fig. 1~b!#. The offset line has the predicted slope2

3
2.
e

e

old ~in this case,b050.8); varying the threshold value be
tweenb050.6 andb051.1 did not change the scaling.

Figure 10 shows a log-log plot ofbP̂(b) vs b obtained
by applying the histogram procedure with an ensemble ob
values generated by samplingb(t) at many evenly spaced
times t over the duration of three long time series. The d
were taken at Rm57.96 (Rm.Rmc). Also plotted in Fig. 10
is a line of slopeh/D50.13, which is the slope predicted b
Eq. ~20!. The data conform reasonably well to this pred
tion.

D. Below threshold „RmËRmc … with a small applied
stimulus

Just before transition (Rm,Rmc) the function b(t)
bursts when a small, uniform, external magnetic field,B
5B0ẑ, is applied~see Fig. 2!. Equation~15! is also predicted
to hold22 in this case but in the range

D21!dt!
„ln~D/B0

2!…

D
.

Figure 11 confirms this prediction using the HOM. The sc
ing range fordt in this case is 1022!dt!1021.

Figure 12 shows our numerical estimate~using the
HOM! of bP̂(b) vs b for Rm57.76 (Rm,Rmc57.88). These
data were taken with an applied external field with mag
tudeB050.166. The offset line is the theoretically predicte
slope ofh/D520.17. ~Note that in contrast to the case
.Rmc , Fig. 10, the predicted slope is negative because n
h,0.) The scaling is predicted to hold forbmax@b@B0,
wherebmax'2.6. The data are seen to be roughly consist
with Eq. ~20!.

E. Possibility of hysteretic dynamo onset

Finally we note that in Ref. 17 it is emphasized th
blowout bifurcations can be either nonhysteretic~supercriti-
cal! or hysteretic~subcritical!. In our article, since our MHD

e

y

a
f

FIG. 10. Probability distribution ofb(t), P̂(b) after transition (Rm
.Rmc). The slope of the offset line ish/D50.13, indicating a signature
scaling ofP̂(b);bh/D21. Data were taken at Rm57.96; see caption to Fig.
4 for details.



e
ha
r
n
v
r-

ion
th
y-

of
us

on
led,
t in
ys-

ast
e

D
this
ys-
e a
nd
ed

re-
re-
e

ec-

uld

se-
of

-

o

-

ys.

ent
a

t the
t

R
al

is

1951Phys. Plasmas, Vol. 8, No. 5, May 2001 Blowout bifurcations and the onset of magnetic dynamo action
simulation gives a nonhysteretic blowout bifurcation, w
have only discussed this case. We point out, however, t
for a different situation~e.g., different forcing, geometry, o
boundary conditions!, it may be possible that the bifurcatio
to dynamo action will be hysteretic. In such a case, a pre
ously developed29 phenomenology and scalings for hyste
etic blowout bifurcations would be expected to apply.

V. CONCLUSION

We have shown that the onset of MHD dynamo act
can have an intermittently bursting character and that
results from a blowout bifurcation at the transition to d

FIG. 11. Fractal dimension of the set of burst times, below transition (m

57.76,Rmc) with an externally applied magnetic field. The predicted sc
ing is N(dt);(dt)21/2, Eq. ~15!, for the range 1022!dt!1021. The offset
line has slope2

1
2. The external field had a magnitude ofB050.166.

FIG. 12. Probability distribution ofb, P̂(b), below transition (Rm,Rmc

>7.88) with a small externally applied field. The slope of the offset line
h/D520.17, whereh520.0044 andD50.026. Data were taken at Rm

57.76. The external field had magnitudeB050.166. The predicted scaling
range isbmax@b@B0, wherebmax'2.6 is the largest value attained byb in
this time series.
t,

i-

is

namo action. In particular, we have verified the presence
this transition by computing the scaling behavior of vario
measured model quantities.

Although the boundary conditions used in our simulati
are not appropriate for constructing an accurate, detai
model of any of the dynamo experiments being carried ou
laboratories, we believe that our result applies to such s
tems. The blowout bifucation is conjectured to be typical17 of
dynamical systems possessing the attributes~i!–~iv! pre-
sented in Sec. II. The MHD dynamo equations and at le
one experimental system14 possess these attributes, and w
have verified numerically that our simulation of the MH
equations undergoes the blowout bifurcation. Based on
evidence we predict that experimental MHD dynamo s
tems with unconstrained turbulent flow should experienc
blowout bifurcation as their transition to dynamo action a
that, if this transition is nonhysteretic, it will be characteriz
by intermittently bursting magnetic fields.

We suggest three specific experimental tests of this p
diction. First, just below the transition, pulse-decay measu
ments could verify the existence of a broad finite tim
Lyapunov exponent distribution comparable to Fig. 4. S
ond, applying a small seed field~which is, in fact, usually
unavoidable in an experimental setting! would cause bursts
similar to Fig. 2 with a fractal set of bursts times~Fig. 11!.
Finally, an experiment performed above transition sho
also show a fractal set of burst times~similar to Fig. 8!.
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