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The magnetohydrodynamics of Earth have been explored at the University of

Maryland and the Institute of Geosciences in Grenoble, France through experiments,

numerical models, and machine learning. The interaction between Earth’s magnetic

fields and its outer core is emulated in a laboratory using the three-meter spheri-

cal Couette device filled with liquid sodium driven by two independently rotating

concentric shells and an external dipole magnetic field. Recently, the experiment

has undergone modifications to increase the helical flows in the poloidal direction to

bring it closer to the convection-driven geodynamo flows of Earth. The experiment

has 31 surface Hall probes measuring sparsely the external magnetic field. The nu-

merical model, XSHELLS, solves the coupled Navier-Stokes and induction equations

numerically to give a full picture of the internal velocity and magnetic field, however,

it cannot resolve all the turbulence. In this thesis we aim to improve the prediction of

magnetic fields in the experiment by performing studies both on experimental data

and simulation data. First, we analyze the simulation data to assess the viability of



using the measured external magnetic field to represent the internal dynamics of the

velocity and magnetic field. These simulations also elucidate the internal behavior

of the experiment for the first time. Next, we compare the experimental magnetic

field measurements with the extrapolated surface magnetic field measurements in

simulations using principal component analysis by matching all parameters but the

level of turbulence. Our goal is to see if (i) the eigenvectors corresponding to the

largest eigenvalues are comparable and (ii) how then the surface measurements of

the simulation couple with the internal measurements, which are not accessible in

the experiment. Next, we perform several machine learning techniques to see the

feasibility of using the current probe setup to predict the magnetic fields in time. In

the second to last chapter, we assess the potential locations for magnetic field mea-

surements. These studies provide insight on the measurements required to predict

Earth’s magnetic field.
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Chapter 1: Introduction

1.1 Background

Earth’s magnetic field protects the ozone layer from solar winds. Over the

past two centuries Earth’s magnetic field has reduced by 5% [1], raising interest in

better understanding, and possibly predicting, its dynamics. It has been accepted

in the 20th century that celestial bodies, like Earth and the sun, can attribute

their self-sustaining magnetic fields to dynamo action, a phenomenon that involves

positive reinforcement of the magnetic field through its interaction with a turbulent,

conductive fluid. Limited by the inaccessibility of Earth’s interior, Earth scientists

are only able to capture surface measurements of the magnetic field. From seismic

waves they deduce the interior contains a solid inner core surrounded by a liquid

outer core. Earth’s geodynamo is generated by thermochemical convection in the

liquid iron outer core, a region bounded by the inner boundary of the crystalline

mantle and the solid inner core. The interaction that occurs between the magnetic

field and turbulent velocity field leads to this self-sustaining dynamo action. While

knowledge of Earth’s magnetic field has advanced substantially through observations

of geologic data and better computers, new approaches are needed to gain sufficient

understanding for prediction. These include laboratory experiments that model
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Earth’s core dynamics, satellite observations, numerical modeling, data assimilation,

machine learning, and information theory.

1.1.1 Geodynamo

The existence of Earth’s core was first confirmed by the geologist Richard

Oldman in 1906 through seismic P and S waves. Measurements of the core-mantle

boundary (CMB) followed in 1912 by Beno Gutemburg who achieve within a few

kilometers of the current CMB depth. Soon after came the discovery of a solid inner

core within a liquid outer core in 1936 by Inge Lehman. Part of the behavior and

composition of the terrestrial interior can be understood by the process of secular

cooling, where Earth loses heat to the surrounding space. Heat is transported by

radiation, conduction, and convection with the CMB controlling the rate at which

heat is lost. Based on the remains of protoplanets found in the form of chondritic

meteorites and composition of the sun, it is believed the core is mostly iron [2]. A

suitable candidate for the core composition is an Fe-Ni alloy, though experiments

have confirmed that mixing in lighter elements results in a better match to the

seismically-observed properties of the core. These lighter elements include but are

not limited to oxygen, silicon, and sulfur [3], and more controversially, magnesium

[4]. The main evidence for lighter elements is how they fit the density and velocity

determined by seismology [2, 5]. The conditions of the core have a significant impact

on the fluid dynamics. While the inner core is cooling it is crystallizing at the inner

core boundary, solidifying heavy elements and releasing lighter elements into the

2



liquid outer core. Buoyant elements escape into the core by the exothermic process.

The release of lighter elements due to secular cooling, also known as compositional

convection, is responsible for most of the thermochemical convection that the drives

the fluid motion [6].

Separate from convection is the effect of Earth’s rotation on the fluid dynam-

ics. Taylor-Proudman theorem states that spherical shells steadily rotating with a

high angular velocity will organize steady homogeneous flows into uniform columnar

structures parallel to the axis of rotation [7]. The two-dimensional flow structure is

geostrophic which means there is a balance between the buoyancy force and Cori-

olis force. It creates a tangent cylinder (TC) parallel to the rotation axis, with a

diameter matching that of the inner core, and can maintain the structure if there

exists an equal balance of pressure gradient and Coriolis forces. The core compo-

sition and condition also have significant impacts on the magnetohydrodynamics

(MHDs). Better computers for ab initio simulations and more accurate tools for

experimental measurements improve on the accuracy of properties of the material

that constitutes Earth’s core. In the past 10 years, first-principles calculations and

diamond-anvil cell experiments suggest that the thermal conductivity is 2-3 times

the thermal conductivity [4] that has been commonly used in geodynamo numerical

models.

Rotation combined with convection redirects fluid in the column structures

through helicity, or vortices that move perpendicular to the bulk flow, the TC in this

case, making the fluid flow only approximately geostrophic. The present magnetic

field and fluid motion induce electrical currents which generate a magnetic field that

3



will also interact with the fluid. Due to the ongoing helical motion, the magnetic

field generated by dynamo action is dipolar. The process can be explained by the

Ω−effect and α−effect of the magnetic field seen in Fig. 1.1

Figure 1.1: The poloidal magnetic field changes direction as it is stretched and
flows with the toroidal velocity of the fluid in an action known as the Ω−effect. The
influence of the velocity field (stretching and twisting of the magnetic field) converts
kinetic energy into magnetic energy. Turbulence leads to the formation of helical
motions causing loops to form orthogonal to the toroidal field in an event known
as the α−effect. The new direction of the magnetic field then reinforces and even
amplifies the original magnetic field in the poloidal direction. This iterative process
is known as self-sustaining dynamo action. Modified diagram from [8].

1.1.1.1 Simulations

The discovery of the solid inner core surrounded by a liquid outer core led

to one of the first dynamo models in 1946 by Walter Elsasser [9, 10]. His model

was formulated as a kinematic dynamo problem which is a dynamo sustained by

supplying a steady velocity field. In his model, convection within the conductive

liquid outer core positively reinforced the present magnetic field through electro-

magnetic induction compensating the ohmic dissipation. His model also introduced

the poloidal and toroidal geometries used in contemporary simulations (see Sec. 2.6

for further details and equations). The generation of the magnetic field b by a con-

ductive fluid moving at some velocity u can be computed by using the induction

4



equation, which combines Maxwell’s equations in a moving conductor with Ohm’s

Law. Both Elsasser [10] and Batchelor [11] suggested the form of the induction

equation,

∂b

∂t
=

1

4πκ
∇2b− (u · ∇)b + (b · ∇)u, (1.1)

where κ is the electrical conductivity and t is time, to explain the interplay between

the velocity and magnetic fields. The first term on the right describes diffusion of

the magnetic field. In the absence of the velocity field (u = 0), the magnetic field

diffuses and decays. The middle term describes the advection of the field with the

fluid motion. The last term describes the rate of stretching of the magnetic field

lines. If the latter two terms are sufficiently large they will overcome the diffusion

leading to an increase in the magnetic field and, thus, a dynamo. The stretching

and twisting process is described schematically in Fig. 1.1.

In 1956, the Bullard-Gellman formalism [12] was derived to find an analytic

solution (up to `max = 4) for a self-excited dynamo in a steady fluid. Bullard & Gell-

man discovered a set of selection rules that determined the azimuthal wavenumbers

of an induced magnetic field due to the interaction between a present magnetic field

and velocity field. In their work they also discuss numerical methods and verify

their solutions up to `max = 4.

The understanding of the dynamics of the geodynamo began with the assump-

tion of a steady velocity field in order to find analytical solutions. It was further

developed by the advancement of computers, making numerical solutions practical.

The full 3D MHD system of equations is based on conservation laws and consists
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of the Navier-Stokes equations, the induction equation, and the heat and composi-

tional transport equations. In 1995, the introduction of more powerful computing

tools allowed for the testing of numerical models of the geodynamo [13, 14]. Simula-

tions have become more realistic as new attributes of the core have been discovered

in recent years, such as the heat flux pattern imposed by Earth’s mantle [15]. Nu-

merical methods for geodynamos can be found in several sources [16, 17, 18, 19].

The methods for solving a geodynamo will be omitted here. We will return to see

numerical methods in Sec. 2.2 for solving for the full 3D velocity and magnetic field

in the rotating experiment subject to the conditions, parameters, and geometry near

matching the physical experiment.

1.1.1.2 Available Observations

There are several forms of data that inform us about the geodynamo. The

magnetic field near Earth’s crust is observed by airplane and ship surveys, giving

small, local magnetic field measurements. Global magnetic field measurements are

captured by observatories and satellites. Larger scale observations are the most

useful for prediction and validations of numerical models. Almost two centuries of

magnetic field data has been captured since the construction of the first observatory

in 1832. Friedrich Gauss and Wilhelm Weber began measurements of the intensity

of the magnetic field and its horizontal component. Newer observatories measure

the magnetic field intensity in vector components of geographic north, geographic

east, and downward (i.e. towards the center of Earth) and are cataloged by the
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organizations such as INTERMAGNET. Since Sputnik 3 in 1957, several satellite

missions measuring the Earth’s magnetic field have been launched. Since 2013, the

most notable Swarm A satellite captures the vector magnetic field and the total

strength/intensity of the magnetic field using an absolute scalar magnetometer as

well as the observed altitude. The coverage of the Swarm Alpha satellite (one of

three spacecrafts) can be seen in Fig. 1.3.

Figure 1.2: Hammer projection of the magnetic observatories provided by the
British Geological Survey (BGS) 2019 Geomagnetism Review [20]. The yellow
markers are contributions from the International Real-time Magnetic Observa-
tory Network [21], the red markers are BGS observatories, the green markers are
BGS/Halliburton(Canada) joint observatories, and the blue markers are for other
geomagnetic observatories.
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Figure 1.3: Different views of Swarm A satellite Absolute Scalar Magnetometer
coverage distribution on Earth. (a) Hammer projection (b) North pole view (c)
South pole view. [22]

1.1.1.3 Prediction Problem in Geodynamos

Studying Earth directly has its disadvantages. Although inferences from seis-

mic data have established the 1D structure of Earth [23], constraining the temper-

ature and compositional variations remains a challenge. For example, the estimates

of the viscosity of the liquid outer core vary by a few orders of magnitude, because

they depend strongly on estimates of core’s temperature and composition. Carrying

out fully-resolved simulations at the estimated parameters of the highly turbulent

system is not currently feasible. When computers can achieve the necessary mem-

ory and speed there will still have to be estimations for the unknowns of Earth’s
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conditions and makeup.

Another limitation to prediction is the sparsity of data that has been collected.

The data obtained by observatories is sparse and unevenly distributed with obser-

vations primarily over land masses, particularly Europe (see Fig. 1.2). The spatially

sparse 200 years of magnetic field data available is short relative to timescales of

geodynamo processes. For reference, one measure of Earth’s timescale is the dif-

fusive dipole decay which is ∼105 years. The spatial distribution of satellite and

observatory data can capture spherical harmonics up to degree 13 or 14 [24]. Pa-

leomagnetic observations exist as far back as 4 billion years [25] but they are too

sparse in time and space for training machine learning tools or validating current

prediction methods. Temporal resolution is on the order of 100 years [26]. Sanchez

et al. resolved archaeomagnetic field data up to degree 3 from 1200 BC to 0 AD,

degree 4 from 0 AD to 1000 AD, and degree 5 from 1000 AD onwards by binning

measurements in 40 year intervals [27]. Satellites are able to cover data over seas,

however, because of their placement between the ionosphere and magnetosphere,

there is the challenge of i) differentiating between the core’s magnetic field and ex-

ternal magnetic field from space and ii) the movement of satellites with respect to

Earth makes it difficult to distinguish between spatial and temporal variations in

magnetic field.

The International Geomagnetic Reference Field (IGRF) is a community-based

model of the main magnetic field and a secular variation estimate. Geomagnetic

secular variation (SV) are changes in the Earth’s magnetic field on timescales of a

year or more, such as a drop in intensity or movement of the magnetic poles. IGRF
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predicts 5 years out, up to spherical harmonic degree 13, and is updated every 5

years. Beyond that, a dynamo model is required, using the initial condition of the

IGRF [22, 28]. Full 3D models used in a data assimilation framework [22, 29, 30],

improve on the IGRF prediction. In most recent studies, data assimilation (Ensem-

ble Kalman Filtering (EnKF)) allows for forecasting the magnetic field evolution

over the next 50 years after assimilating the observations from 1840 to 2020 with

the ensembles from a dynamo model [30].

1.1.2 Magnetohydrodynamic Spherical Couette Device

The sparsity in data (both spatially and temporally) and the uncertainty in the

geodynamo model due to estimates of Earth’s composition motivate another form of

study: Magnetohydrodynamic Spherical Couette experiments. Laboratory experi-

ments designed to better understand Earth’s magnetic field emulate the geometry

and other physical properties of our planet’s core. This includes the University of

Maryland (UMD) 3-meter (3m) experiment, the data from which is a core element

of this thesis. The timescales in the experiment are shorter so we can obtain a suffi-

cient amount of data to represent the dynamics in time. The diffusive dipole decay is

about a couple seconds —so a relatively significant amount of data can be obtained

within a PhD. Another advantage the experiment has over Earth is we know the

composition of the interior. We also know the conditions since the experiment runs

at a constant temperature with a steady driving force. While experiments contribute

to our understanding of Earth’s magnetic field in various ways, they are also limited
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by the impracticability of capturing interior data as measurements can be dangerous

and unfeasible. Meanwhile, a full 3D numerical model could not practically resolve

all the features of this turbulent system and might miss some of the information.

The more turbulent the system dynamics, the more demanding the simulation is

in storage and time. This thesis analyzes both experimental data and 3D direct

numerical simulations in the parameter space closest to the 3m experiment.

1.2 The Three-Meter Diameter Sodium-Filled Spherical Couette Ex-

periment

This project will focus on the data of the 3m experiment [31, 32] which consists

of a stainless-steel outer spherical shell concentric with a spherical inner core, as seen

in Fig. 1.4. The outer sphere is 2.92 m in diameter with a 2.52 cm shell and the

inner sphere is 0.97 m in diameter. Both the inner sphere and the outer sphere can

rotate independently. There is an approximately one-meter cavity between them

which is filled with metallic liquid sodium. The liquid is held roughly at a constant

temperature by oil passing through pipes wrapped about the outside of the outer

sphere. The experiment was originally set up with one electromagnet (solenoid loops

wrapped concentric to the outer shell) around the equator [31, 32]. Now, there are

two electromagnets situated above and below the plane of the equator with circular

loops parallel to the equator, imposing an approximately dipole magnetic field (see

Fig. 1.4). In 2020, baffles were added to the inner sphere to increase helicity. The

data used in this thesis is with the two electromagnets and without baffles.
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Figure 1.4: Schematics of the 3-meter diameter spherical Couette experiment with
the inner sphere and shaft in red and outer shell in gray. Measurements of the
magnetic field are taken from the 31 Hall probes on the surface and from 2 inserted
into the interior.

The 3m experiment is the successor to several experiments in Prof. Daniel

Lathrop’s complex dynamics lab at UMD. The 30 cm diameter experiment [33] was

one of the first spherical containers. It was stationary and originally had impellers

instead of an inner core. It also had baffles to redirect motion into the poloidal di-

rection. Adding an inner sphere (with and without baffles) to the 30 cm did not lead

to dynamo action. The lack of necessary instability can be attributed to an insuf-

ficiently high magnetic Reynolds number (see Table 1.1 for definition). Therefore,

the team opted for a bigger design. The second largest, 60 cm diameter experiment,

originally was made to be a rotating convection experiment by including a cooled

inner sphere locked to the outer sphere [34]. The convective dynamics would be

dictated by the same set of governing equations as Earth (with temperature bound-
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ary conditions that differ). The experiment was modified to allow for independent

rotation of the shells. The independent rotation of the inner sphere meant removing

the cooled inner sphere and any significant role of convection. The spherical Couette

produces a higher magnetic Reynolds number than the laboratory convection-driven

flow.

Around the same time that the Maryland team was constructing their first

experiments, the Derviche Tourneur sodium experiment (DTS) was created at the

Earth Sciences Institute at the Grenoble Alpes University. The 42 cm experiment

contains a 14.8 cm inner core. Sodium is heated uniformly and injected into the

annulus between the shells. A permanent magnet lies within the copper inner core

and supplies a magnetic field through the sodium that is dipole oriented along the

axis of rotation [35]. Due to its smaller size, it was not designed to generate dynamos

but serve as a prototype for future, larger Earth-like mechanical experiments like

the 3m.

All experiments described above emulate the geometry of the ratio of the inner

core to the CMB. That is, all that contain inner cores have the ratio of inner to

outer radius (ri/ro) close to 1/3. One deviation from Earth’s geometry that we note

is the inner sphere is fixed on a mechanical shaft. All experiments are filled with

sodium. Sodium has a high electrical conductivity and can be heated to liquid not

far from room temperature. Sodium is practical to use in a rotating experiment

as it is lighter than other metals like mercury or gallium. Sodium is also relatively

cheap and not toxic. Lastly, sodium is highly reactive to water. Both geodynamo

teams collaborate and take extensive measures to ensure the safety of the projects.
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1.2.0.1 The Physical Model

This thesis focuses on modeling the spherical Couette flow of liquid sodium

between two counter rotating shells and its interaction with an applied dipole mag-

netic field. The dynamical system can be described by the induction equation (in

a different form than Eq. (1.1)) and the Navier-Stokes equation for incompressible

fluids.

Figure 1.5: Diagram of the spherical shell and the coordinate systema.

aImage from: https://magic-sph.github.io/equations.html

Let u and b be the full 3D velocity field and magnetic field, respectively.

Given the solenoidal conditions ∇ ·b = 0 and ∇ ·u = 0, the governing equations in
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nondimensional form are

∂tb = ∇× (u× b) +
Em

|Ro|
∆b (1.2)

∂tu +
2

Ro
ẑ× u + (∇× u)× u = −∇p∗ +

Ek

|Ro|
∆u +

ΛEm

Ro2
(∇× b)× b. (1.3)

where p∗ is a reduced pressure absorbing all potential forces. The directional unit

vector ẑ can be seen oriented in Fig. 1.5. Table 1.1 is a table of some of the significant

nondimensional numbers. Table 1.2 is a table of the important dimensional numbers

with units.

Parameter Definition

Ekman number Ek = ν/(r2o|Ωo|)
Reynolds number Re = UL/ν
magnetic Ekman number Em = η/(r2o|Ωo|)
magnetic Reynolds number Rm = UL/η
Rossby number Ro = (Ωi − Ωo)/Ωo

magnetic Prandtl number Pm = ν/η
Elssaser number Λ = B2

o/(µρη|Ωo|)

Table 1.1: Table of common nondimensional parameters for magnetohydrodynamic
systems on rotating spherical shells.

The nondimensional numbers in Table 1.1 have important physical signifi-

cance. The Ekman number is the balance of the dissipative viscous forces and the

Coriolis force from rotation. Nearly the inverse of Ek is the Reynolds number which

characterizes the ratio of advection terms to viscous terms in Eq. (1.3) and univer-

sally represents the level of turbulence in a fluids system. The magnetic Ekman and

magnetic Reynolds numbers are the magnetic equivalent to their fluid flow counter-

parts. They represent the importance of diffusion of the magnetic field with respect
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Symbol Definition Units

ν liquid sodium viscosity m2/s
ro outer shell inner radius m
η liquid sodium magnetic diffusivity m2/s
Ωo angular velocity of the outer shell s−1

Ωi angular velocity of the inner shell s−1

f rotation rate s−1

τ rotation time (1/f) s
ρ liquid sodium density kg/m3

µ magnetic permeability of vacuum N/A2

L characteristic length (here ro) m
U characteristic velocity (here urms) m/s
T characteristic time (here τ) s

Table 1.2: Table of common physical parameters with units for magnetohydrody-
namic systems on rotating spherical shells.

to advection and vice versa, respectively. The Rossby number is defined as the

differential rotation between the inner and outer spherical shells normalized by the

outer shell angular velocity. It is the main driving force of the turbulence in the

rotating experiment. The Ro has the most significant role in the dynamical state

of the 3m experiment which will be discussed more in Sec. 1.2.1.1. The magnetic

Prandtl number is particular to MHD flow as it is the ratio between viscous and

ohmic dissipation. The Elssaser number is a way of characterizing the magnetic

field strength under the influence of rotation. Denoted Λ, it is the ratio between the

Lorentz and the Coriolis forces.

Equations (1.3) & (1.2) are in the reference frame rotating with the outer

sphere, therefore the no-slip boundary condition applied to the velocity field is u(r =

ro) = 0 at the outer shell and u(r = ri) = r sin θϕ̂ at the inner shell. See Fig. 1.5 for

a diagram of the mentioned boundary condition parameters. The magnetic field is

that of an electrical insulator outside of the domain, and there is a conductivity jump

16



between the liquid sodium to the material of the inner and outer shells. Equations

(1.3) & (1.2) with the boundary conditions are solved by representing u and b in

terms of their spherical harmonic decomposition and using the numerical methods

discussed in Sec. 2.2.

1.2.0.2 Available Simulations

There are numerous numerical simulations of the spherical Couette experi-

ment. Here, we will focus on the MHD versions, particularly those without a steady

flow field like the early kinematic dynamos of Bullard and Gellman’s work [12].

Full 3D spherical MHD and dynamo models incorporate the Navier-Stokes equa-

tion with the Lorentz force and use the numerical techniques of Gilman [36] and

Glatzmaier [16]. Details of the simulation will be discussed in Chapter 2. Simu-

lations of the MHD spherical Couette experiment are closely related to convection

driven dynamo simulations. For example, Matsui [37] uses his dynamo model [38]

but replaces buoyancy forces with mechanical forcing from the differentially rotating

boundaries. Matsui’s simulations compare the inertial modes of the simulation with

the 3m experiment when it had a single coil at the equator. The DTS experiment

is simulated using XSHELLS in [39, 40, 41, 42]. It is more common to find gen-

eral MHD simulations with spherical shells and a dipole magnetic field such as the

following simulation studies [43, 44, 45, 46, 47]. Recent experimental upgrades on

3m were inspired by the simulations of Finke and Tilgner where they add outward

forcing from the inner sphere [48]. In the experiment, the force takes the form of
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baffles. Ideally, the baffles will create helicity, adding magnetic field in the poloidal

direction and generating a dynamo. This list of simulations here is incomplete.

Spherical Couette and geodynamo flows can be simulated with open access codes:

MagIC1 and XSHELLS2.

1.2.0.3 Available Observations (of the 3m Experiment)

The experimental data, which will be used in Chapters 3 and 5, is the radial-

component of the magnetic field at the 31 Hall probes on the outer shell as indi-

cated in dark blue in Fig. 1.4. They are taken at a rate of 256 measurements per

second. This data is considered temporally-dense and very spatially-sparse. It is

pre-processed (unbiased) so that the magnetic field intrinsic to the probe’s function

is removed. From here, the magnetic field can be analyzed as 31 points in time or

these measurements can be projected onto a natural basis for the system such as

the spherical harmonics (see Sec 3.2 for more details).

Other measurements that are not used in the thesis are two magnetic probes

in contact with the sodium measuring in the cylindrical-radial direction and in the

cylindrical-azimuthal direction. There are also three dynamic pressure probes and

one kinematic pressure probe. The torque on the inner sphere is measured using a

strain gauge in between the motor and the shaft. Additionally, my teammates are

able to measure the torque applied to the outer sphere from the necessary power

required to keep the outer sphere moving at a constant rate. In this set-up, it is

1Can be found here: https://magic-sph.github.io/
2Can be found here: https://bitbucket.org/nschaeff/xshells/src/master/

18

https://magic-sph.github.io/
https://bitbucket.org/nschaeff/xshells/src/master/


important to note that measurements cannot be made directly of the velocity field

or the internal magnetic field. There have been attempts at acoustic velocimetry

both in simulations [49] and on the experiment. However, passing a signal through

the roughly inch-thick stainless-steel and then recording a returned signal from the

liquid sodium has not yet been achieved in practice. Also, additional modes could

be excited by the mechanical noise of the experiment.

1.2.1 Comparison in parameters (Earth, simulations, experiment)

Table 1.3 is a reference table for comparison of Earth parameters and what

geodynamo simulations [15] are able to accomplish. These are compared to the

parameters of the 3m experiment [31] and what we have been able to use in their

respective simulations.

Symbol Earth geodynamo sims 3m experiment 3m sims

Ek 10−15 10−7 − 3 · 10−5 3 · 10−8 3 · 10−7 − 3 · 10−6

Pm 10−6 0.1− 1 10−5 10−4 − 10−3

Λ 10 1− 10 (0, 0.055) 0.0022 & 0.055
Rm 103 102 − 103 900 108− 377
Ro 10−6 10−3 − 3 · 10−2 (−68,−0.2)(0.2, 65) (−1.75, 1.75)

Table 1.3: Table of nondimensional parameters comparing Earth, Earth simulations,
the 3m experiment, and the 3m simulations.

The largest gap in parameters is the difference in Ek number between Earth

and their simulations at a difference of 8 orders of magnitude. For the experiments

and its simulations, we manage to get as close as a difference of 1 order of magnitude

in Ek for Ro = −0.5. The magnetic Prandtl number is linked to the Ek by the Em

since Pm = Ek/Em. Therefore, there again is the same scale of discrepancies in
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Pm as with Ek between the Earth and geodynamo simulations and the experiment

and their simulations. Elsasser number can be matched without issues. Since the

Ro is the main driving force of turbulence in the experiment, it is not practical (i.e.

very small time steps and high spatial resolution) to simulate and keep the low Ek

except for a very narrow range of Ro ∈ [−1.75, 1.75] where we can overlap. The

smallest Ro that has been achieved with the physical experiment is 0.2.

1.2.1.1 Dynamic States

Figure 1.6 shows which Λ, Ro, and Ek are available in simulations and experi-

ments via symbols. The colors of the symbols represent the state of the experiment.

There are two available states: one where the inertial modes dominate (in black) and

the other where there is high torque (in red). The states are dependent on only the

Rossby number and are determined by prior analysis with a single coil [31]. The two

higher Ro values of 1.67 and 1.75 are close to the parameter space where there are

fluctuations between high and low torque states. In water experiments performed on

the 3-meter experiment prior to the sodium experiment, the torque was examined

for 0.07 < Ro < 3.4. The authors of [50] determine that from Ro < 1.8 the high

torque state dominates almost surely (probability of 1).
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Figure 1.6: The diagram includes experiments and simulations of differing Ek as
indicated in the legend. The black color indicates the parameters space where the
inertial modes dominate. The red color are parameters with the high torque states.

1.3 Objective and Contributions

This thesis investigates the different approaches used to predict the magnetic

field of the three-meter experiment in time. Our objectives and contributions are

to:

• Simulate the three-meter experiment.

• Perform time series analysis of the full 3D velocity and magnetic fields.

• Show the surface magnetic field measurements are correlated with internal

field.

• Perform PCA of radial magnetic field component from a full resolution of
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the simulations at the radial distance equivalent to the experimental measure-

ments.

• Validate the simulation and experiment match in eigenvectors corresponding

to the largest eigenvalues of the PCA at certain control parameters.

• Score of the best proposed geometries for new probe locations to add to the

surface measurements.

• Test machine learning techniques and their ability to predict the experimental

measurements in time.

In this work, we analyze data from both the experiment and simulations based

on the physical model described in Sec. 1.2.0.1 in order to combine the advantages

of each and mitigate their limitations. The experimental data captures the highly

turbulent nature of the system, plus some intrinsic error associated with physical

measurements. The measurements are spatially sparse, limited to the magnetic field

outside of the experiment, and cannot yet reach the velocity field. Simulations can

capture the full magnetic and velocity field but are limited to Reynolds numbers

that are 1-2 orders of magnitudes less than the real system due to computational

limitations. They can reproduce the dynamic regimes in the systems and give us

insight into regions of large variation in the system (seen in fluctuation studies of

Sec. 2.5), which can be useful for establishing the initial error in potential data

assimilation studies. Furthermore, simulations can give insight on the connection

between the surface magnetic field measurements and the magnetic and velocity

fields inside the experiment. In Sec. 2.6 we look at how the toroidal and poloidal
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components of the surface magnetic field at the location of the probes are connected

to the velocity and magnetic field within. In Sec. 3.3, the principal components of

both the experiment and simulations are analyzed to determine (i) can the current

experimental measurements capture the large variation in the system and if not,

(ii) what measurements are necessary to add in the experimental upgrades. In

Chapter 4 potential location of new probes are assessed to improve the accuracy of

mapping of the radial surface magnetic data onto the spherical harmonics. Next,

we look to machine learning techniques in Chapter 5 to test if reservoir computing

and LSTM networks can use the sparse spatial magnetic field to forecast the probe

measurements in time. Chapter 6 concludes the thesis with a discussion of the

presented work and potential future work.
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Chapter 2: Numerical Simulations

2.1 Objectives

The following chapter details techniques of the full 3D direct numerical sim-

ulation XSHELLS and modifi cations to the simulation to make it similar to the

three-meter experiment. Data analysis is performed on the simulations in the form

of fluctuation studies and correlation studies. The fluctuation studies show the dis-

tributions of the internal magnetic field and velocity field over time as well as the

mean bulk of the fluid/magnetic field. Figures demonstrate the dynamics of the in-

ternal fluid and magnetic field motion for different Ro corresponding to the inertial

mode and high torque states. Lastly, there are correlation studies to elucidate the

relationship of the surface magnetic field measurements, like those captured with

the experiment, with the internal toroidal velocity and poloidal magnetic fields.

2.2 XSHELLS: the rotating spherical fluid simulation

XSHELLS [51] is a highly parallelizable full 3D simulation designed to solve

the rotating Navier-Stokes equation (Eq. (1.3)) in spherical shells. The C++ code

was created by Nathanaël Schaeffer at the Institute for Earth Sciences in Greno-
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ble, France and is available and maintained on bitbucket [52] along with his original

spherical harmonics C library, SHTns, [53]. Benchmarked with other rotating spher-

ical harmonic codes, XSHELLS is proven to be accurate and fastest [19]. Though

there are several built-in high performance options, for the simulations shown here

the library performs transforms using OpenMP while computations between radial

shells are done with MPI. It is optimized to be fast and use low memory. XSHELLS

solves several spherical shell problems including rotating hydrodynamics or rotating

magnetohydrodynamics by coupling to the induction equation (Eq. (1.2)). Addi-

tionally it has the option to include temperature for convection driven problems

like the geodynamo. For the rotating spherical shells experiments, we assume the

contributions of the differential temperature is negligible compared to the rotating

forces.

XSHELLS employs the numerical techniques of Gilman [36] and Glatzmaier

[16]. In the problem of interest, the numerical model solves Eqs. (1.2) and (1.3) for u

and b in terms of the spherical harmonics using SHTns [53]. Assume we work with

solenoidal vector fields, that is, an incompressible velocity (∇ · u = 0) field and a

divergence-free magnetic field (∇ · b = 0). The magnetic field (likewise the velocity

field) is represented by the decomposition of its poloidal and toroidal components

respectively,

b(r, θ, ϕ, t) = ∇×∇× [BP r̂] +∇× [BT r̂] (2.1)

u(r, θ, ϕ, t) = ∇×∇× [UV r̂] +∇× [UU r̂]. (2.2)
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Here BP(r, θ, ϕ) and BT (r, θ, ϕ) are respective poloidal and toroidal scalars for the

magnetic field. Likewise, UV(r, θ, ϕ) and UU(r, θ, ϕ) are the respective poloidal and

toroidal scalars for the velocity field. The vector r̂ is the radial position vector. The

scalar fields themselves decompose into sums of their radial and angular parts,

BP(r, θ, ϕ, t) =
∞∑
`=1

∑̀
m=−`

Pm` (r, t)Y m
` (θ, ϕ), (2.3)

BT (r, θ, ϕ, t) =
∞∑
`=1

∑̀
m=−`

T m` (r, t)Y m
` (θ, ϕ), (2.4)

UV(r, θ, ϕ, t) = r
∞∑
`=1

∑̀
m=−`

Vm` (r, t)Y m
` (θ, ϕ), (2.5)

UU(r, θ, ϕ, t) = r2
∞∑
`=1

∑̀
m=−`

Um` (r, t)Y m
` (θ, ϕ), (2.6)

where Y m
` (θ, ϕ) = Pm

` (cos θ)eimϕ and Pm
` (cos θ) are the Schmidt semi-normalized

associated Legendre polynomials. Note that when m = 0 these are the Legendre

polynomials. In this form, the Gauss coefficients P , T , U , and V take on complex

values. Since we are dealing with real-valued data, then the Gauss coefficients satisfy

P−m` = (Pm` )∗ where z∗ is the complex conjugate of z. Therefore, XSHELLS only

stores coefficients for m ≥ 0 [53].

Pressure in Eq. (1.3) is eliminated by taking the curl of Eq. (1.3) since the

curl of the gradient of pressure is 0. This problem was originally used to model

the similar French DTS experiment. The code uses second-order in-space finite-

difference methods in the radial direction and handles the angular directions using

spherical harmonic transforms (pseudospectral) on each radial shell. As it steps

in time, it uses implicit Crank-Nicolson scheme for the diffusive terms and treats
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the nonlinear terms and Coriolis contribution with an Adams-Bashforth scheme. It

performs with second-order convergence in time.

2.3 Modifications to the model for 3m

The original setup for the experiment, which I’ll refer to as the Big Sister

magnetic setup, consisted of 160 turns of square 1.3 cm aluminum wire with a cooling

bore. It was placed at the equator with an inner magnet diameter of 3.6 m and

outer magnet diameter of 4 m. The turns have a rectangular cross section with

wire stacked in 10 layers vertically and 16 layers radially. A current is supplied

through the electromagnetic at a range of 0 to 300 A, producing a magnetic field

of a maximum of 16 mT [31]. Dan Zimmerman modeled the magnetic field using a

finite difference approximation of a single wire at 1.9 m. Likewise, in XSHELLS, the

external applied magnetic field is supplied analytically by setting the initial magnetic

field equal to the term ‘bigsister’ (i.e. b=bigsister in parameter file ‘xshells.par’).

In XSHELLS, the analytic solution for the magnetic field from the equator

coils is computed in terms of spherical harmonics using analysis from the classic

electrodynamics text of Jackson [54]. We would like to compute the potential of a

point P at x due to a unit charge at x′. The contributions of the unit charges are

then summed up (integrated) over the curvature of the coil. Examining the Fig.

2.1, we can note that the face of the loop is parallel the to xy-plane and the loop is

equal distance from the z-axis.
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Figure 2.1: The potential of a point P at x due to a unit charge at x′. Figure from
[54].

This symmetry in the current loop provides only the azimuthal component of

the magnetic vector potential,

Aϕ(r, θ) =

∫ 2π

0

Iaµ

4π

cosϕ′

|x− x′|
dϕ′. (2.7)

The value I is the current applied through the coils and a is the distance of the coil

from the z-axis. This assumes that the current lies at θ = π/2. In terms of the

spherical coordinates, we can compute the distance between the coil and a desired

point P in terms of the spherical harmonics,

1

|x− x′|
= 4π

∞∑
`=0

∑̀
m=−`

1

2`+ 1

r`<
r`+1
>

Y m∗
` (θ′, ϕ′)Y m

` (θ, ϕ), (2.8)

where r> = max(r, a) and r< = min(r, a). Substituting Eq. (2.8) into Eq. (2.7) and
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simplifying (refer to Jackson [54] p. 183-4 for details) the potential becomes,

Aϕ = −µIa
4

∞∑
`=0

(−1)`(2`− 1)!!

2`(`+ 1)!

r2`+1
<

r2`+2
>

P 1
2`+1(cos θ) (2.9)

where (2`− 1)!! = (2`− 1)(2`− 3)(· · · )× 5× 3× 1. From this form of the potential,

we compute analytically the br and bθ (bϕ = 0) for each at desired grid points

using,

br =
1

r sin θ

∂

∂θ
(sin θAϕ)

=
µIa

2r

∞∑
`=0

(−1)`(2`+ 1)!!

2``!

r2`+1
<

r2`+2
>

P2`+1(cos θ) (2.10)

bθ =
1

r

∂

∂r
(rAϕ)

= −µIa
2

4

∞∑
`=0

(−1)`(2`+ 1)!!

2`(`+ 1)!


−
(
2`+2
2`+1

)
1
a3

(
r
a

)2`
if r < a

1
r3

(
a
r

)2`
if r ≥ a

P 1
2`+1(cos θ).

(2.11)

On Nov. 8, 2015 the 3m experiment was upgraded by Matthew Adams and

Doug Stone from the single coil to two coils located roughly symmetric on the upper

and lower hemisphere. Therefore, instead of only having one dipole external elec-

tromagnetic field configuration we now have two configurations: a dipole magnetic

field is produced by running the current in the same direction in both coils and a

quadrupole magnetic field produced by running the current in opposite directions.

This will be called the Big Sister 2 setup. Now, the challenge for Big Sister 2 is

to find an analytic solution in spherical harmonic representation for the coil off of
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the xy-plane. We can no longer use Eq. (2.8) for the standard spherical harmonic

representation centered at the origin. The following are solutions for the magnetic

field components of a single coil located at the spherical radial a and colatitude θc

taken from [55] using analysis from [54] and visualized in Fig. 2.2,

br =
µI

4πr2 sin θ
√
r2 + a2 − 2ar cos (θ + θc)

×
[
ar sin (θ + θc) f(k) +

(r2 + a2) cos θ − 2ar cos θc
2 sin θ

g(k)

]
(2.12)

bθ =
−µI

4πr sin θ
√
r2 + a2 − 2ar cos (θ + θc)

×
[
{r − a cos (θ + θc)} f(k) +

a2 − r2

2r
g(k)

]
(2.13)

where

f(k) ≡
(
2− k2

)
K(k)− 2E(k)

g(k) ≡ −2E(k)− k2K(k) +
(
2− k2

)
Π
(
−k2, k

)
k2 =

4ar sin θ sin θc
r2 + a2 − 2ar cos (θ + θc)

where E(k), K(k) and Π(k) are the complete elliptical integrals of the first, second,

and third kind respectively.
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Figure 2.2: Schematic of a ring current I at colatitude of θc and distance a from the
origin, and a sphere of radius R. Figure from [55].

The elliptic integrals are difficult and costly to represent. With the coils lo-

cated off the xy-axis, an option would be to compute each on the xy-axis, convert

to Cartesian or cylindrical coordinates, translate to their location on the upper and

lower hemispheres, and then convert back to spherical harmonics. There is no simple

way to translate the spherical harmonics in the z-direction. Instead, we return to

using a numerical approximation to the coils. They are calculated by approximating

them as single coils located at z = 0.632 m and z = −0.540 m with r = −1.9 m.

Without too much difficulty, we can compute the Cartesian components of the mag-

netic field produced from each coil and then convert them to br and bθ (bϕ negligibly

small) at the desired grid points and sum the two coil contributions for the dipole

or take the difference for a quadrupole. The magnetic field at a point located at x
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due to the coil located at x′ is computed by numerically integrating the following,

B(x) =
Iµ

4π

∫
(x− x′)× dl
|x− x′|3

(2.14)

using python. The two external applied magnetic field configurations can be viewed

using paraview as seen in Fig. 2.3.

Figure 2.3: Left is the quadrupole magnetic field. Right is the dipole magnetic
field. The contour is of the br-component scaled according to the color bar for
both configurations. The streamlines of the magnetic field are emitted from the
surface. The images make it appear that the source of the magnetic field is inside
the experiment rather than the external coils.

In summary, I have modified simulations from the DTS experiment (which

has an internal magnet field and copper inner sphere) by constructing the applied

exterior magnetic field using numerical Biot-Savart law and projecting it on the

lowest 20 poloidal spherical harmonics. I also changed the boundary conductivity

of the inner sphere to match the stainless steel inner shell. This code is parallelized

with hybrid of MPI and OpenMP. Simulations have been completed on Grenoble’s
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HPC froggy and UMD’s HPC Deepthought2 for several regimes that match all

parameters except for the unfeasibly low Ekman number as discussed in Sec. 1.2.1.

The magnetic field at the equivalent location of the experimental probes is

outside the domain of the simulation. Therefore, the magnetic field in free space

must be computed by combining the imposed field with the field from the outermost

shell of the domain. The length scale in simulations is nondimensionlized by the

location of the outermost radial shell of the velocity field. Therefore, the outermost

shells of the magnetic field domain is at rb = 1.003 and the location of the Hall

probes is rp = 1.0522. Let ro be the location of the outermost shells of the magnetic

field simulation domain and Pimposed(r) be the imposed external field constructed as

described in section 2.2. Note the external magnetic field is constant in time. Then

I assume the Hall probes are located in a potential vacuum (air) and compute the

measurements from those at the shell ro using the integral/sum,

Pm` (r, t) =
(
Pm` (ro, t)− (Pm` )imposed (r)

)( r

ro

)−(`+1)

+ (Pm` )imposed (r)

(
r

ro

)`
.

(2.15)

Now the magnetic field outside the experiment can be measured for any r such as

at the probe location r = rp. There is no toroidal field outside of the experiment.

The extrapolated magnetic field calculation is used to compare directly with the

Hall probes of the experiment using the Principal Component Analysis in the next

section. In the rest of the chapter, the computed shell will be included as part of

the analysis of the full 3D magnetic field.
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2.4 Simulation parameters

This section has information about the parameters used in successful simula-

tions. Simulations are initialized with the imposed field of a certain Λ and u = 0

with either the smallest Ro = 0.5 or −0.5. The simulations are run until the en-

ergies stabilize and then |Ro| is increased and parameters adjusted to get the next

simulation.

Λ ∆t nr nbl `max mmax

0.0022 2.9 · 10−5 360 50, 50 150 100
0.055 1.6 · 10−5 400 50, 50 150 100

Table 2.1: Simulation parameters used for the most turbulent cases. The parameters
are Ek = 3.3 · 10−7 and Ro = −0.5.

Ro ∆t nr nbl `max mmax

-1.75 3.4 · 10−6 540 40, 40 250 150
-0.5 7.6 · 10−5 256 20, 20 150 100
0.5 1.8 · 10−5 300 20, 20 150 100
1.67 2.8 · 10−6 480 40, 40 250 150
1.75 3.0 · 10−6 480 40, 40 250 150

Table 2.2: Simulation parameters for the lower external magnetic field cases. The
parameters are Ek = 3.3 · 10−6 and Λ = 0.0022.

Ro ∆t nr nbl `max mmax

-1.75 3.0 · 10−6 560 40, 40 250 150
-0.5 7.6 · 10−5 200 20, 20 150 100
0.5 1.5 · 10−5 320 20, 20 150 100
1.67 2.9 · 10−6 480 40, 40 250 150
1.75 2.8 · 10−6 480 40, 40 250 150

Table 2.3: Simulation parameters for the higher external magnetic field cases. The
parameters are Ek = 3.3 · 10−6 and Λ = 0.055.

During a simulation run, Ro, Λ, and Ek are fixed and time step ∆t is adaptive.

All simulations have the magnetic Ekman number 3.13 · 10−3. The global spatial
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resolution is defined based on the number of radial shells, max degree `, and max

order m. Eqs. (2.3)-(2.6) are truncated at different maximum ` and m values. The

angular grid is regularly spaced but the radial grid is refined near the boundary

layer which is found to have thickness scaling at
√
Ek. The refinement of the

radial shells at the two inner and outer boundaries assigns the respective number

of shells nbl in the
√
Ek region from each of the boundaries. See Tables 2.1, 2.2,

& 2.3 for the number of radial shells in the respective inner and outer boundary

layers, nbl, and radial grid nr for different parameters. The radial grid, time step,

and maximum ` and m are selected to ensure the simulation obeys physical laws

through a spectral convergence test. The fields are checked by computing the ratio

of the last four modes of the energy spectrum with lower order modes (neglecting the

first `,m = 0− 2 as they are related to the imposed field and forcing). The default

threshold is a ratio of 0.3 which is chosen to check that the higher modes remain

roughly an order of magnitude lower in energy than the lower modes. In order

to achieve the low Ek numbers used in these simulations, we add a hyperviscosity

and assume there exists a turbulent cascade to small scales in the Ekman layer.

The simulations apply hyperviscosity to the angular part of the Laplace operator

so that the effective viscosity is increased on the highest spherical harmonics (`0 >

0.8`max) [13]. To ensure the simulations reproduce the physical attributes of the

experiments, I performed an analysis to compare the spectrum of the experimental

measurements with those of the simulation matching all parameters but varying Ek

and with/without hyperviscosity (not shown here). An Ekman number of 3 · 10−5

with hyperviscosity was sufficient to reproduce internal modes in the experiment.
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Simulations have been prepared for analysis by running them until the total kinetic

and magnetic energies appear statistically stable (over 100 or more rotation periods).

I then initialize runs from the statistically stable fields and collect snapshots in time

for data analysis.

The rotation time of the simulation is τsim ≈ 0.02. Say we need 8 points per

azimuthal wave number to resolve it. Then if we sample it at a rate of 10−4 the

maximum m is

mmax =
τsim

8 · 10−4
= 25. (2.16)

The sampling rate is sufficient for our purposes. As mentioned in the introduction,

observation of Earth’s magnetic field are only available up to `max = 13 or 14. The 31

probes on the current 3m experiment capture up to `max = 4. In Chapter 3, we will

compare PCA results of both the experiment and simulation as well as investigate

the number of rotation periods necessary to form the eigenvectors and eigenvalues

close to the experimental results. In our current chapter, we proceed with analyzing

the full 3D simulation data.

2.5 Fluctuation Studies of simulation runs

The purpose of the following studies is to show the internal behavior demon-

strated in simulations by representing the bulk flow and the variation in the velocity

field and magnetic field independently. The inside of the physical experiment cannot

be measured so this simulation study provides an idea of what the interior of the

3m experiment could look like. These studies were inspired by those by Kaplan et.

36



al [42] on simulations of the DTS experiment.

2.5.1 Time series analysis

Figures 2.4 & 2.5 are plots of the fluctuations in the kinetic and magnetic

levels over a time series, respectively. We first compute the average of each field

over time, (which is predominantly m = 0) with `max = 100 − 250. The equation

for the average magnetic field is

b(r, θ, ϕ) =
1

N

N∑
i=1

b (r, θ, ϕ, ti) . (2.17)

We can compute ensembles as the difference between each snapshot in time and the

average. For the magnetic field we compute the ensemble spread as

b̃ (r, θ, ϕ, ti) = b (r, θ, ϕ, ti)− b(r, θ, ϕ). (2.18)

These ensembles reveal the fluctuations outside the large scale m = 0 caused by

the shear from the driving differentially rotating shells. Effectively revealing signs

of the α−effect by removing the Ω−effect. From these ensembles we compute the

magnetic energy densities by performing the integral,

〈b̃ · b̃〉(r, θ) =
1

N

N∑
i=1

1

2π

∫ 2π

0

b̃ · b̃ (r, θ, ϕ, ti) dϕ. (2.19)
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Similarly, we perform the same calculation on the velocity field to find the kinetic

energy densities. We display the square root of the energy densities as slices below

where the intensity of the fluctuations scale from light in color for closer to zero and

change to solid color closer to the maximum values listed. The contours represent

the average bulk of the fluid/magnetic field motion. In the velocity field, those are

various contours of the mean angular momentum and in the magnetic field plot,

the ϕ− component of the mean magnetic field is shown. In the data we vary the

Ro while keeping Λ fixed. We use Λ = 0.055, which is 25 times the strength of

Λ = 0.0022. The magnetic field should be more active, ideally having more of an

interesting impact on the velocity field.

The following figures show the time and azimuthally averaged data which de-

pict the velocity field fluctuations (blue) and magnetic field fluctuations (green).

The contours on the magnetic field are the mean toroidal magnetic field. The con-

tours of the velocity field are the mean angular momentum. These are all completed

for Λ = 0.055. The two Ro = −1.75, 1.75 have Ek = 3.3 · 10−6 and Ro = −0.5 has

Ek = 3.3 · 10−7. These simulation studies overlap the parameters of the 3m experi-

ment (except in Ek.).
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Figure 2.4: Meridian slice of fluctuations of the velocity field. Time and azimuthally
averaged velocity field fluctuations are illustrated in white to blue from 0 to the
maximum value of the energy density in the lower right of each meridian slice. The
contours of the velocity field are the mean angular momentum.

Figure 2.5: Meridian slice of fluctuations of the magnetic field. Time and az-
imuthally averaged magnetic field fluctuations are illustrated in white to green from
0 to the maximum value of the energy density in the lower right of each meridian
slice. The contours on the magnetic field are the mean toroidal magnetic field.
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2.5.2 Discussion

The velocity field in Fig. 2.4 shows consistently the highest region of fluctua-

tions is at the equator of the inner sphere. This is where the angular momentum is

highest as well. We can also see the contours of the angular momentum are some-

what concentric to the TC but change for different states. For the inertial mode

state (Ro = −1.75&− .5) the contours are straight and parallel to the tangent cylin-

der but for the high torque state (Ro = 1.75), the contour begins to bend towards

the poles. Observing the fluctuations shows none of the flows are geostrophic. For

Ro = −1.75 the TC has more fluctuation towards the axis of rotation as we move

from the top (or bottom) toward the inner sphere. For the Ro = −0.5 fluctuations

are largest near the inner core. This contrasts with the higher Ro = 1.75 with fluc-

tuations largest near the north and south poles, perhaps due to centrifugal forces

pushing the fluid towards the equator and then up or down towards the poles.

The magnetic field in Fig. 2.5 shows fluctuations coinciding with the mean

toroidal magnetic field for the inertial state parameters, Ro = −1.75& − 0.5. For

Ro = −1.75, the mean toroidal magnetic field is centered in one region near the

equator of the inner sphere. The Ro = −0.5 study has two regions of the mean

toroidal field in the upper and lower hemispheres. Its lack of symmetry is due to

the asymmetry of the applied external field with external magnets simulated at

different distances from the equator like with the experiment. Its more noticeable

for the small |Ro| parameter. Fluctuations for Ro = −0.5 have moved towards the

poles where we also see fluctuations in the velocity field of Fig. 2.4. The contours
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for the parameter Ro = 1.75 are symmetric with two regions of high magnetic field

intensity at different distances from the equator. Between these regions in a patch

of high fluctuations. The Ro = 1.75 parameters contrasts with the others by having

fluctuations predominantly toward the outside near the equator.

2.6 Radial correlation studies of simulation runs

To prepare for the comparison of the experiment with simulations, from the

XSHELLS simulation output using python I recreate the radial shell at the radius

of the 31 Hall probes that measure the magnetic field outside of the experiment.

The location of the Hall probes is outside the domain of the simulation so it must

be additionally computed using Eq. (2.3).

In the studies of this section, I look at truncated poloidal and toroidal com-

ponents of both the magnetic field and velocity field and measure how well they

are correlated (or anti-correlated) with the poloidal magnetic field (as decomposed

in Eqs 2.4 & 2.6) observed at the equivalent hall probe locations in the simulation.

I measure the covariance between the poloidal magnetic field, the probe location,

and other fields at various radial shell depths. First by computing the spread and

normalizing by the standard deviation. The covariances between the real poloidal

component of the hall probe measurements are computed at various depths using

a sample of d = 10000 (15000 for Ro = 1.75) ensemble members truncated at

`max = 14. The covariance is computed by taking the normalize spread elements,
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and filling the columns of a matrix, X. The covariance is calculated as

C =
1

d− 1
XXT . (2.20)

Figure 2.6 is an example of a covariance plot. I measure the covariance between

the real component of the poloidal magnetic field coefficients at the outer radius of

the simulation and itself. The unevenly distributed ticks correspond to the order

m. Each pixel in that m-block is a `-number within that order m, increasing the

direction of the m-numbers along each axis. So the largest m = 0 has ` = 1, . . . , 14;

m = 1 has ` = 1, . . . , 14 (ex: green box); m = 2 has ` = 2, . . . , 14; . . .; and m = 14

has ` = 14. This produces the m-blocks of decreasing size along the diagonal of each

matrix (see one block in green). Note the Gauss coefficient for (`,m) is zero so it is

not displayed here.
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Figure 2.6: Covariance plot of Re[P(ro)] and itself for Ro = −0.5. The unevenly
distributed ticks on each axis correspond to the order m. Within each m there are
the pixels for each `. For example, in the green box we have m = 1 with pixels
` = 1, . . . , 14 from top to bottom. The colorscale in indicate how correlated (red)
or anti-correlated (blue) the elements of Re[P(ro)] are with itself.

Now the figures will be denser in information with multiple covariance plots

between the real component of the poloidal magnetic field coefficients at the probe

location, Re[P(rp)], and other fields at various radial shell depths such as 95%, 75%,

50%, and 35% (near the inner sphere) of the outer radius.

In Figs. 2.7, 2.8, & 2.9, the left column is the covariance with real component

of the poloidal magnetic field coefficients and the right is the covariance with the

real component of the toroidal velocity field coefficients at depths corresponding to

the outer radius, ro. Each are compared with Re[P(rp)] with the objective to show

correlations between the magnetic field coefficients at the equivalent experimental

probe locations in simulations and the internal field coefficients that can currently

only be captured through simulation.
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Figure 2.7, is the correlation plot with the Ro = −1.75 and Ek = 3 · 10−6

simulation run. In the figure, there appears to be some correlation of Re[P(rp)] and

the real component of the poloidal magnetic field coefficients at 75 % depth of the

outer radius, Re[P(0.75ro)], for m = 1 − 4. However it is not very strong. There

appears to be weak correlations between Re[P(rp)] and the real component of the

toroidal velocity field coefficients at 95% of the outer radius depth, Re[U(0.95ro)].

Correlations with deeper velocity field coefficients are too weak to distinguish.

Figure 2.7: Covariance plots for Ro = −1.75, Λ = 0.055, and Ek = 3 · 10−6. Each
covariance plot is computed from the real component of the poloidal field coefficients
at the probe location rp and i) the real component of the poloidal magnetic field
coefficients (left) and ii) the real component of the toroidal velocity coefficients
(right) at depths corresponding to the outer radius, ro. The unevenly distributed
ticks on each axis of each covariance plot correspond to the order m. Within each
m there are the pixels for each `. Colors range blue to red with values -1 to 1
respectively denoting how anti-correlated or correlated each element of the field
coefficients are with each other.

44



Figure 2.8, is the correlation plot with the Ro = −0.5 and Ek = 3 · 10−7

simulation run. Both Ro = −1.75 and Ro = −0.5 are characterized as inertial mode

states due to their Ro but their covariance plots differ. Unlike Ro = −1.75, the

plots of Ro = −0.5 show strong correlations for m = 0 & 1 over all the covariance

plots. There even weaker correlations in all the plots for m = 2 & 3, more so for

the magnetic field coefficients than with the velocity field coefficients. Again, large

m have very subtle correlations that appear weaker with depth.

Figure 2.8: Covariance plots for parameters Ro = −0.5, Λ = 0.055, and Ek =
3 · 10−7. Each covariance plot is computed from the real component of the poloidal
field coefficients at the probe location rp and i) the real component of the poloidal
magnetic field coefficients (left) and ii) the real component of the toroidal velocity
coefficients (right) at depths corresponding to the outer radius, ro. The unevenly
distributed ticks on each axis of each covariance plot correspond to the order m.
Within each m there are the pixels for each `. Colors range blue to red with values
-1 to 1 respectively denoting how anti-correlated or correlated each element of the
field coefficients are with each other.
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Figure 2.9, is the correlation plot with the Ro = 1.75 and Ek = 3 · 10−6 simu-

lation run. Out of all the correlation studies, Fig. 2.9 has the weakest correlations

between Re[P(rp)] and the internal field coefficients. There are some weak correla-

tions between Re[P(rp)] and Re[P(0.75ro)] for low ` ≤ 7. Also there are some weak

correlation between Re[P(rp)] and Re[U(0.95ro)] for m ≤ 2.

Figure 2.9: Covariances plots for parameters Ro = 1.75, Λ = 0.055, and Ek =
3 · 10−6. Each covariance plot is computed from the real component of the poloidal
field coefficients at the probe location rp and i) the real component of the poloidal
magnetic field coefficients (left) and ii) the real component of the toroidal velocity
coefficients (right) at depths corresponding to the outer radius, ro. The unevenly
distributed ticks on each axis of each covariance plot correspond to the order m.
Within each m there are the pixels for each `. Colors range blue to red with values
-1 to 1 respectively denoting how anti-correlated or correlated each element of the
field coefficients are with each other.
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2.6.1 Discussion

The radial correlation studies were inspired by the analysis of Fournier et al.

[22] and Sanchez et al. [30] on geodynamo model data. In the work of Fournier

et al., correlation plots, truncated at `max = 10, are produced measuring between

the surface poloidal magnetic field coefficients and the poloidal and toroidal field

coefficients separately with correlation plots at various depths from the CMB to the

inner core boundary. They observe the axial dipole coefficient is strongly correlated

with its surface value at all levels of the radial field. Due to magnetic diffusion, there

are correlations found along the diagonal, particularly in the upper part near the

CMB [22]. The analysis of Sanchez et al. [30] is a plot of the autocorrelation between

the poloidal surface magnetic field coefficients and itself with the field truncated at

` = 14. In their paper, they found the presence of the selection rules of Bullard and

Gelman [12] through the interaction of an even (odd) order m only correlates with

odd (even) degrees `, producing a ‘checkboard’ pattern in their correlation plot [30].

We see similar effects in Figs. 2.7, 2.8, & 2.9, as Fournier et al. [22] in the

correlation of our surface magnetic field with the fields beneath. Magnetic diffusion

is present at the surface of the experiment evident by the stronger correlations on

the diagonal closer to the surface (see P(rp) vs. P(0.75ro) in Fig. 2.9). In the

autocorelation plot of Fig. 2.6, there is some ‘checkboard’ pattern indicating the

selection rules of Bullard and Gellman [12]. Strong correlations in the m = 0 and

m = 1 components in Fig. 2.8 are indicators that these external measurements can

constrain both the 3D internal magnetic and velocity fields at least for the set of
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control parameters corresponding to Ro = −0.5. This could be due to the dominant

eigenvectors, which are mostly m = 1, ` = 1, and will be seen in the PCA of the

next chapter. The spherical harmonic with m = 1, ` = 1 makes up a large wave

that would go deep into the interior. The Ro = 1.75 simulations differ from the

other two by being in the high torque state. We saw the noticeable difference in

the fluctuations of the magnetic fields in Fig. 2.5. Specifically, the largest region

of fluctuations was at the equator towards the outer shell. With the fluctuation

localized to near the surface, there would not be strong correlations between the

surface coefficient measurements and the field coefficient at any significant depth.
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Chapter 3: Principal component analysis of mechanical MHD simu-

lations and experiments

3.1 Objectives

In this chapter, we take a look at the eigenvalues and both the spatial and

temporal eigenvectors corresponding to the largest eigenvalues. We wish to connect

the principal component analysis (PCA) of both the simulation and experimental

data to the spherical harmonics at the radial distance rp from the origin. In the

first section, we show the spherical harmonic basis functions for the magnetic field

projected onto the radial component. We focus on this component for our studies

because we can observe the radial component of the magnetic field in the experiment

at the 31 probe locations. The PCA will be performed on the full 2D radial shell from

the simulation at the simulation equivalent of rp, a subsample of the simulated radial

shell at grid points closest to the 31 probe locations, and the actual experimental 31

probe measurements. The purpose of these exercises is i) to match the simulation

with the experiment by their eigenvectors and ii) to find which spherical harmonics

are dominant so that we can make a clever suggestion for new hall probe placements

on the experiment.
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3.2 Spherical harmonic basis functions

The current 31 experimental measurements were placed to be at the same

radial distance from the origin, i.e. the radial shell of radius 1.5369 m or 1.0522 times

the inner radius of the outer shell. Where they are located outside of the stainless

steel shell, there is no toroidal contribution to the magnetic field. Projecting the

poloidal vector spherical harmonics onto the radial unit vector to get the radial

component of the magnetic field (Eq. (2.3)) takes the form [9, 10, 12]

r̂ ·BP =
`(`+ 1)

r2
P(r)Y `

m (3.1)

with P(r) = r−` outside the sphere and Y `
m of the form,

Y `
m(θ, ϕ) = Pm

` (cos θ) (Gm,s
` (t) sinmϕ+Gm,c

` (t) cosmϕ) . (3.2)

The radial component of the magnetic field now assumes the form of the finite sum

of spherical harmonics and scalar Gauss coefficients,

br(r, θ, ϕ, t) =
`=4∑
`=1

m=∑̀
m=0

`(`+1)
(r0
r

)`+2

Pm
` (cos θ) (Gm,s

` (t) sinmϕ+Gm,c
` (t) cosmϕ) .

(3.3)

We use the data evaluated at the (r, θ, ϕ, t) locations of the simulation grid points or

the Hall probes in time. Figure 3.1 illustrates the spherical harmonic basis projected

onto the radial unit vector corresponding to different degrees ` and azimuthal wave

numbers m. These plots only show the m values corresponding to the cosine term
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.

Figure 3.1: The radial component of the spherical harmonics on a shell up to `max =
5. The degree ` = 0 is constant and is omitted here.

of Eq. (3.2). The other sine m has the same structure except it is out-of-phase of

its cosine counterpart. Thus, the azimuthal waves come in pairs.

In the PCA post-analysis we wish to map the spatial eigenvectors correspond-

ing to the dominant eigenvalues to the spherical harmonics. The spherical harmonic

basis vectors and the eigenvectors are each normalized so that their L2-norm is set

to 1. Then the inner product, call it gm` , is taken between the spherical harmonic

basis vectors of the PCA eigenvectors. In order to ignore the phase difference of

cosine/sine azimuthal wave pairs and the phase difference between the basis vectors

and the eigenvectors, we can combine the inner products corresponding to the sine

and cosine from Eq. (3.3). For each t, let gm` =
√
gm,s` + gm,c` , then rearrange so that

gm,s` sinmϕ+ gm,c` cosmϕ = gm`

(
gm,s`

gm`
sinmϕ+

gm,c`

gm`
cosmϕ

)
. (3.4)
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Define an angle α of a right triangle to be such that cos(α) =
gm,s
`

gm`
. Then,

gm`

(
gm,s`

gm`
sinmϕ+

gm,c`

gm`
cosmϕ

)
= gm` (sinα cosmϕ+ cosα sinmϕ) (3.5)

= gm` sin(mϕ+ α). (3.6)

For the purpose of analysis, for terms where m 6= 0, we can neglect the phase shift

between cosmϕ, sinmϕ, and the eigenvectors and use gm` as a single coefficient for

the positive azimuthal wavenumberm. In order to eliminate the phase difference, the

strength of the projection will be defined in this manner when we test the alignment

of the eigenvectors with the spherical harmonics. For m = 0 in the projection

strength map, I redefine g0` = |g0` | to be consistent with the other positive gm` when

m 6= 0.

3.3 Principal component analysis

Principal component analysis [56, 57] is a technique that stems from the cal-

culus of variations. It uses eigenvalues as representation of the maximum variation

in the direction of their corresponding eigenvectors. In implementation, PCA can

uncover the best fit for a natural basis such as Fourier series, Chebyshev polyno-

mials, or in our case, spherical harmonics. In derivation, seen in p.1-6 of [57], it is

constructed with introductory knowledge of linear algebra (singular value decompo-

sition), calculus 3 (Lagrange multipliers), and statistics (random variables).

PCA has been extensively used for weather modeling where eigenvectors from
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PCA, also called empirical orthogonal functions (EOFs), are found as a basis for

statistical weather prediction. In the classic work of Lorenz [59] and White [60] EOFs

were used to predict the sea-level pressure field. Lorenz suggests eigenvectors can be

fields of several variables (i.e. velocity field and magnetic field combined to make an

eigenvector) to create coupled PCA in order to show the variation of multiple fields

together. Coupled PCA was executed by Kutzbach [61] for monthly mean sea-level

pressure, surface temperature, and precipitation at 23 points. He found that fewer

eigenvectors were needed to explain the variance for coupled PCA than doing PCA

on the individual fields separately. Though this approach has its appeals as the

velocity and magnetic field are coupled by the Lorenz force term, coupled PCA is

not used in this these due to the size and number of samples necessary as will be

seen in Fig. 3.10 for example. Instead I will analyze only the 2D radial shell of

magnetic field and argue that the correlation studies such as Fig. 2.8 show there is

a relationship between the surface magnetic field measurements and those beneath

for certain azimuthal wave numbers.

More applications of PCA on Earth include retrieving the principal compo-

nents lateral velocity patterns from tomographic imaging of the mantle [58]. PCA

has been implemented on MHD spherical Couette systems. In the geodynamo EOF

analysis work by Fujii and Schultz [55], they found the main eigenvector can pre-

dominantly (explaining around 90% of the variance) represent SV for periods longer

than 5 days. Most recently there has been a little sister study of Kaplan’s work [42]

on simulations of the DTS experiment, studying the energy density and its sym-

metry of the first three singular modes (eigenvectors) for the fields separately (i.e.
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uncoupled) and well inside the boundaries (r ∈ [0.425, 0.975]). This was done in

this domain to neglect the dense amount of radial shells near the boundary layer.

In his analysis the eigenvectors were symmetric about the equator for Ro = −1 and

Λ = 0.095. For Ro further from 0 and higher Λ the dominant mode is antisymmetric

about the equator and exhibits chaotic bursts in energy. Aside from their size, the

little sister setup includes an internal magnetic so the magnetic field is more intense

than the Big Sister setup making it not ideal to compare with 3m.

3.3.1 Approach

The approach in practice is to place d snapshots of real data of dimensionality

D into the rows of a d×D matrix. We want the distribution to beN (0, 1), so we then

subtract the mean across the columns from each column and divide each column by

the standard deviation also taken across the columns of the d×D matrix to get X.

The normalized matrix X can then be written as the singular value decomposition

(SVD) X = LΣRT where columns of L are the left singular vectors, columns of R

are called the right singular vectors, and Σ are the eigenvalues.

Since the high-dimensional space is so large (D ∼ 106 for a radial shell), it is

best to represent the d×D matrix X explicitly to compute the SVD with D >> d.

A possible approach is to look at XXT which is now a smaller d× d matrix. Given
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X = LΣRT , the property RTR = RRT = I and Σ is diagonal, then

XXT = LΣRT
(
LΣRT

)T
(3.7)

= LΣRTRΣLT (3.8)

= LΣΣLT (3.9)

= LΣ2LT . (3.10)

The SVD of XXT gives the squared non-zero singular values of X, up to a rank d−1

due there being d snapshots total and to subtracting the mean so the columns of X

can only be at most rank d−1. In the next section, we will study the eigenvalues to

see if we have a sufficient amount of snapshots to represent the system. Also note

that the eigenvectors of XXT are the left singular eigenvectors of X. The SVD of

XTX by similar argument is

XTX = RΣ2RT . (3.11)

In this case, the eigenvectors of XTX are the right singular eigenvectors of X. The

form, 1
D

XTX is the estimated covariance matrix C similar to those in Sec. 2.6. The

D × D matrix is fine to represent for experiments with 31 probes but can be too

large to represent for simulation data (unless the data is truncated like in Sec. 2.6).

The XXT matrix (also known as the Gram matrix) is much smaller d× d (here we

will use d = 10000 or 15000 for simulations).

The next challenge is more of a computational one: how to find the PCA of

XTX when the dimension of the data is too large to represent the D×D matrix R.
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To do this, let’s assume ~̀ is an eigenvector of XXT with corresponding eigenvalue

λ. Then using some linear algebra, associative properties and λ is scalar,

XXT ~̀= λ~̀ (3.12)

XT
(
XXT ~̀

)
= XT (λ~̀) (3.13)(

XTX
) (

XT ~̀
)

= λ
(
XT ~̀

)
. (3.14)

So what this says is λ is also an eigenvalue for XTX with corresponding eigenvector

XT ~̀. We can compute the eigenvalues and left eigenvectors of XXT and then find

the ith right eigenvector by computing XT ~̀
iσ
−1
i .

3.4 PCA studies on the 3-meter system

In these studies we look for a few items that are intrinsic to the dynamical

system. In the following section we look at the radial component of the magnetic

field on the radial shell where the probes are approximately located. Another thing

we would expect to see if the eigenvectors corresponding to the natural basis of

spherical harmonics. We expect there to be waves which come as pairs of sine

and cosine. They can be recognized by similar eigenvalues and two eigenvectors

aligning with the same projection strength gm` . The largest waves in the experiment

correspond with lower m−numbers spherical harmonics (see Fig. 3.1). Likewise, due

to the scale of the large waves, their variation is large and thus the variance attained

by PCA.
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The eigenvalues are shown with the corresponding cumulative variance ex-

plained by the eigenvectors corresponding the the largest eigenvalues, Vk. The

variance is computed by arranging the eigenvalues in decreasing order, λi, for

i = 1, 2, . . . , n − 1 where n = min(N,D). Then for each eigenvalues λk the cor-

responding cumulative variance is explained by the sum

Vk =
k∑
i=1

λi/

n∑
i=1

λi. (3.15)

The six eigenvectors correspond to the largest eigenvalues will be plotted as ham-

mer/aitoff projections. An analysis of the dominant 30 eigenvectors’ alignment with

the spherical harmonic basis will follow the spatial eigenvector plots. This is done

first with the simulation data on a radial shell. Then in the next section, we sub-

sample the simulation radial shell and compare that with the experimental data.

3.4.1 Extrapolated magnetic field of the simulation

The plots in this section are computed using simulation data on a full radial

shell unless otherwise indicated. Each subsection includes the parameter values in

the title which should overlap with the experiment except in Ek. The first plot

contains a subplot of the eigenvalues for simulations with differing lengths in runs

(more snapshots or rotations in time) to see how they compare to the experiment’s

eigenvalues. Similarly there is a plot of the spectra of the dominant temporal eigen-

vector for the different length simulation runs and comparison with the experiment.

We hope that these plots will justify the amount of simulation snapshots needed for
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PCA to represent the real system. The next plot is of the 6 leading eigenvectors

which might appear to take the form of the spherical harmonics basis functions of

Fig. 3.1. Below that is an assessment of how aligned the leading 30 eigenvectors

are to the spherical harmonics. With the current number of probes on the 3m, we

can measure up to `max = 4 so these plots should demonstrate the utility of adding

more probes.

3.4.1.1 Simulation Ro = −1.75, Λ = 0.055, Ek = 3 · 10−6.

Figure 3.2 contains the eigenvalues and the explained variance for control

parameters Ro = −1.75, Λ = 0.055, and Ek = 3 · 10−6. In this figure, the first

two eigenvalues come as a pair and the 6 largest eigenvalues make up 63% of the

cumulative variance for the simulation with 51 rotations. For the experiment with

1098 rotations, the 6 largest eigenvalues make up 60% of the cumulative variance.
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Figure 3.2: PCA eigenvalues and cumulative variance explained by the eigenvalues
for simulation magnetic field data on a radial shell for parameters Ro = −1.75,
Λ = 0.055, Ek = 3.3 · 10−6 for different test lengths. These are compared to the
experimental data (from 31 measurements) in brown stars.

Figure 3.3 compares the temporal eigenvector corresponding to the largest

eigenvalues for various lengths of simulations run and an experimental run. The

first peak of the 51 rotation run overlaps with the first peak of the experiment near

f/fo = 0.1.
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Figure 3.3: Spectra of first eigenvector for simulation and experimental data of
Ro = −1.75, Λ = 0.055, Ek = 3.3 · 10−6. This plot include different lengths of
simulation data to establish the appropriate amount of samples needed to compare
to the experiment.

The following subplots in Fig. 3.4 are the eigenvectors corresponding to the

6 largest eigenvalues in order. The first 4 eigenvectors visually appear as pairs of

out-of-phase waves. Their corresponding eigenvalues are close, confirming they are

pairs.
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Figure 3.4: Simulation eigenvectors corresponding to the largest 6 eigenvalues for
Ro = −1.75, Λ = 0.055, Ek = 3.3 · 10−6.

In Fig. 3.5, the strength of the projection of the eigenvectors are shown in

the projection map. The principal eigenvector and its pair are mostly the spherical

harmonic basis of (m, `) = (2, 3). The second pair of eigenvectors appear as a

combinations of (m, `) = (1, 1), (1, 3),&(1, 5). The fifth and sixth eigenvectors do

not come as pairs, but the seventh and eighth appear to project onto (m, `) = (1, 4).
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Figure 3.5: Projection strength map for simulation studies at Ro = −1.75, Λ =
0.055, Ek = 3.3 · 10−6. The map shows the alignment of the top 30 eigenvectors (in
order of their corresponding eigenvalues) with the spherical harmonics basis up to
`max = 5.

3.4.1.2 Simulation Ro = −0.5, Λ = 0.055.

Figure 3.6 also displays the eigenvalues and explained cumulative variance for

a variety of simulation lengths and one experimental run. Based on the two longest

simulation runs matching, it seems 25 rotations is sufficient for the analysis. There

is gap in the cumulative variance of the first two eigenvalues where the simulation

is 81%, the experiment has 52% variance. For all analysis, we can see pairs in the

largest two eigenvalues.
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Figure 3.6: PCA eigenvalues and cumulative variance explained by the eigenvalues
for simulation magnetic field data on a radial shell for parameters Ro = −0.5,
Λ = 0.055, Ek = 3.3 · 10−7 for different test lengths. These are compared to the
experimental data (from 31 measurements) in brown stars.

Figure 3.7 compares the temporal eigenvector corresponding to the largest

eigenvalues for various lengths of simulations run and an experimental run. The

first peak of the simulation with more than 10 rotations overlaps the first peak of

the experimental run near f/fo = 0.1. Note the noise floor of the experiment where

the flat line of the simulation data appears for f/fo > 2.5.
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Figure 3.7: Spectra of first eigenvector for simulation and experimental Data of
Ro = −.5, Λ = 0.055, Ek = 3.3 · 10−7. This plot include different lengths of
simulation data to establish the appropriate amount of samples needed to compare
to the experiment.

The following subplots in Fig. 3.8 are the eigenvectors corresponding to the 6

largest eigenvalues in order. As was seen from the eigenvalues in Fig. 3.6, the first

2 eigenvectors distinctly appear as a pair of out-of-phase waves.
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Figure 3.8: Simulation eigenvectors corresponding to the largest 6 eigenvalues for
Ro = −.5, Λ = 0.055, Ek = 3.3 · 10−7.

Further analysis of Fig. 3.8, in the form of the projection strength maps of

Fig. 3.9 shows there is another pair in the third and fourth eigenvector. The main

pair maps onto the spherical harmonics basis of (m, `) = (1, 5)&(1, 1). The third an

fourth maps more weakly onto (m, `) = (2, 4).
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Figure 3.9: Projection strength map for simulation studies at Ro = −0.5, Λ = 0.055,
Ek = 3.3·10−7. The map shows the alignment of the top 30 eigenvectors (in order of
their corresponding eigenvalues) with the spherical harmonics basis up to `max = 5.

3.4.1.3 Simulation Ro = 1.75, Λ = 0.055.

Figure 3.10 displays the eigenvalues and explained cumulative variance for

several length of simulation runs and one experimental run. Based on the two

longest simulation runs matching, it seems 51 rotations is sufficient for the analysis.

The first two eigenvalues come as a pair and the 6 largest eigenvalues make up 41%

of the cumulative variance for the simulation with 76 rotations. For the experiment

with 987 rotations, the 6 largest eigenvalues make up 57% of the cumulative variance.
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Figure 3.10: PCA eigenvalues and cumulative variance explained by the eigenval-
ues for simulation magnetic field data on a radial shell for parameters Ro = 1.75,
Λ = 0.055, Ek = 3.3 · 10−6 for different test lengths. These are compared to the
experimental data (from 31 measurements) in brown stars.

Figure 3.11 compares the temporal eigenvector corresponding to the largest

eigenvalues for various lengths of simulations run and an experimental run. The

first peak of the longest simulation run appears at f/fo = 0.1 but does not precisely

overlap with the peak from the experimental data.
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Figure 3.11: Spectra of first eigenvector for simulation and experimental Data of
Ro = 1.75, Λ = 0.055, Ek = 3.3 · 10−6. This plot include different lengths of
simulation data to establish the appropriate amount of samples needed to compare
to the experiment.

The following subplots in Fig. 3.12 are the eigenvectors corresponding to the

6 largest eigenvalues in order. As was seen from the eigenvalues in Fig. 3.10, the

first 2 eigenvectors appear as a pair of out-of-phase waves.
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Figure 3.12: Simulation eigenvectors corresponding to the largest 6 eigenvalues for
Ro = 1.75, Λ = 0.055, Ek = 3.3 · 10−6.

To search for pairs beyond the main two eigenvectors, we look at the projection

strength map of Fig. 3.13. The main two eigenvectors appear to be a combination of

(m, `) = (2, 4)&(2, 2). The fifth and sixth eigenvector make mostly of the spherical

harmonic basis of (m, `) = (3, 3). The 16th and 17th eigenvector make a pair from

(m, `) = (5, 5).
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Figure 3.13: Projection strength map for simulation studies at Ro = 1.75, Λ = 0.055,
Ek = 3.3·10−6. The map shows the alignment of the top 30 eigenvectors (in order of
their corresponding eigenvalues) with the spherical harmonics basis up to `max = 5.

3.4.1.4 Discussion

For Ro = −1.75 and based on the plot of the variance explained by the eigen-

values, in Fig. 3.2 we can interpret that 51 rotations is enough to properly compute

the PCA of the system since it compare well with the experimental variance. An-

other justification 51 rotations are sufficient is from the first peak near f/fo = 0.1

matching the experiment in the spectra of the first temporal eigenvector in Fig. 3.3.

The largest peaks differ slightly between the experiment and simulation which could

be due to noise in the eigenvectors. For Ro = −0.5, we look at Fig. 3.6, the eigen-

values don’t match the experiment but appear to converge at 25.5 rotations. We

can also see in the spectra of Fig. 3.7 there isn’t much difference between the domi-
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nant eigenvector of the PCA of 25.5 rotation and 51 rotations. The first peak, again

roughly near f/fo = 0.1 matches between the experiment and simulation. The most

interesting thing about this plot is the noise floor of the experiment can be noted

by comparing with the flat line of the simulation data for f/fo > 2.5. For our high

torque state at Ro = 1.75, Fig. 3.10 shows 51 rotations to be sufficient. Unlike the

two inertial mode parameters, in Fig. 3.11 we see the first peak of the experiment

spectra falls at a higher relative frequency than the simulations, likely indicating a

greater noise level that is not captured in the simulation data. You might notice

too that the change in the cumulative variance curve is smoother for the experiment

likely due to noise in the experimental measurements. Note about all the eigenvalue

plots is that the first two eigenvalues are close in value, indicating they are a pair

of waves which can be seen in the eigenvector figures and projection strength maps.

For Ro = −1.75, Fig. 3.4 shows two pairs of eigenvectors: the first & second

and the third & fourth. The pairs are out-of-phase versions of each other. We

can observe the pairs in Fig. 3.5 they the first & second eigenvectors are strongly

correlated with spherical harmonic (m, `) = (1, 1). The third & fourth eigenvectors

are strongly correlated with (m, `) = (2, 3), (1, 3),&(1, 5). The spherical harmonic

(1, 3) is hard to view from just the eigenvector plots without the projection strength

map. For Ro = −0.5, Figs. 3.8 & 3.9, we can deduce the first two eigenvectors

are a pair corresponding to (m, `) = (1, 1)&(1, 5). The spherical harmonics basis

corresponding to (1, 5) would not be able to be observed in the current experimental

setup with only `max = 4 attainable. For Ro = 1.75, Figs. 3.12 & 3.13 shows 2 pairs

of eigenvectors in the first six eigenvectors. The first two are strongly correlated
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with (m, `) = (2, 4)&(2, 2). The fifth & sixth eigenvector is strongly correlated

with (3, 3). Fig. 3.13 shows another pair of eigenvector corresponding to the 16th

& 17th eigenvalues aligning with corresponding basis of (5, 5). Again, our current

experiment setup with 31 probes can only capture `max,mmax = 4. These studies

further motivate the need for more surface measurements on the experiment.

3.4.2 Comparison of experiment and simulation at hall probe loca-

tions

In this section, we explore the principal component analysis of the 2D PCA

of the experiment’s 31 probes placed on a radial shell of radius 1.5369 m or 1.0522

times the inner radius of the outer shell. The mean and eigenvectors are compared

with the simulation data subsampled at the equivalent 31 locations of the Hall

probes. The measurements are spatially sparse, yet temporally dense (so in this

case d >> D) so the SVD for PCA is implemented on XTX.

3.4.2.1 Simulation vs. Experiment: Ro = −1.75, Λ = 0.055.

In Fig. 3.14 we compare the average radial magnetic field on the probe shell

of the full resolution simulation and the experiment measurements for Ro = −1.75,

Λ = 0.055, and Ek = 3.3 · 10−6. The 31 experimental measurements are shown in

red and the python package tricontour is used to fill in the magnetic field between

them. There is good agreement between the means which are predominantly the

(m, `) = (0, 2) spherical harmonics basis.
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Figure 3.14: Mean magnetic field for Ro = −1.75 normalized by the spatial mean
and standard deviation. Green corresponds to negative values and purple to positive
values. Plot (a) show the magnetic field from the full 3D simulation and (b) shows
the magnetic field from 31 points (labeled in red) observed in the experiment.

Figure 3.15 are projection strength plots of the subsampled simulations (at

the equivalent 31 Hall probe locations are the experiment) and the experiments.

Each of these plots separately categorizes the eigenvectors based on their alignment

with the spherical harmonic basis (m, `) with value gm` . The two plots are displayed

side by side to see how the main eigenvectors compare between the simulation and

experiment as well as the spherical harmonic basis. The first two eigenvectors of

the subsampled simulation make up a pair predominantly aligning with the (m, `) =

(2, 3) spherical harmonic basis. The first two main eigenvectors of the experiment

also make up a pair but contrast with the simulation since they are a combination

of (m, `) = (1, 4), (1, 3)&(1, 5). The third & fourth eigenvectors of the subsampled

simulation make up a pair predominantly aligning with the (m, `) = (1, 1) spherical

harmonic basis. The third & fourth eigenvectors of the experiment also make up

a pair but contrast with the simulation since they are a combination of (m, `) =

(1, 3), (1, 1), (1, 4),&(1, 5). A few other pairs are distinguishable including the 6th &

7th eigenvectors of the experiment which are predominantly made of (m, `) = (1, 1)
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spherical basis.

Figure 3.15: Projection strength map for subsampled simulation studies at Ro =
−1.75, Λ = 0.055, Ek = 3.3 · 10−6 vs. experimental studies. The map shows the
alignment of the top 30 eigenvectors (in order of their corresponding eigenvalues)
with the spherical harmonics basis up to `max = 5.

3.4.2.2 Simulation vs. Experiment: Ro = −0.5, Λ = 0.055.

In Fig. 3.16 we compare the average radial magnetic field on the probe shell

of the full resolution simulation and the experiment measurements for Ro = −0.5,

Λ = 0.055, and Ek = 3.3 · 10−7. The 31 experimental measurements are shown in

red and the python package tricontour is used to fill in the magnetic field between

them. Again, there is good agreement between the means which are predominantly

the (m, `) = (0, 2) spherical harmonics basis.
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Figure 3.16: Mean magnetic field for Ro = −0.5 normalized by the spatial mean
and standard deviation. Green corresponds to negative values and purple to positive
values. Plot (a) show the magnetic field from the full 3D simulation and (b) shows
the magnetic field from 31 points (labeled in red) observed in the experiment.

Figure 3.17 are projection strength plots of the subsampled simulations and

the experiments. Each of these plots separately categorizes the eigenvectors based

on their alignment with the spherical harmonic basis (m, `) with value gm` . I look for

pairs of eigenvectors since wave as intrinsic to the MHD system. In the subsampled

simulation there is strong alignment of the main two eigenvectors with (m, `) = (1, 1)

spherical harmonic basis and weaker alignment with (1, 5)&(1, 4). Another pair

then appears in the 4th & 5th eigenvectors which align with (m, `) = (4, 4)&(5, 5).

Unfortunately, I do not see overlap with the pairs of the experiment. The first pair

of eigenvectors as made up of a combination of (1, 2), (1, 3), (1, 4),&(1, 5).

75



Figure 3.17: Projection strength map for subsampled simulation studies at Ro =
−0.5, Λ = 0.055, Ek = 3.3 · 10−7 vs. experimental studies. The map shows the
alignment of the top 30 eigenvectors (in order of their corresponding eigenvalues)
with the spherical harmonics basis up to `max = 5.

3.4.2.3 Simulation vs. Experiment: Ro = 1.75, Λ = 0.055.

In Fig. 3.18 we compare the average radial magnetic field on the probe shell

of the full resolution simulation and the experiment measurements for Ro = 1.75,

Λ = 0.055, and Ek = 3.3·10−6. The 31 experimental measurements are shown in red

and the python package tricontour is used to fill in the magnetic field between them.

Visually, there is good agreement between the means which are predominantly the

(m, `) = (0, 2) spherical harmonics basis. This is consistent across the changing Ro

and Ek because it is the structure of the dipolar external magnetic field.
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Figure 3.18: Mean magnetic field for Ro = 1.75 normalized by the spatial mean and
standard deviation. Green corresponds to negative values and purple to positive
values. Plot (a) show the magnetic field from the full 3D simulation and (b) shows
the magnetic field from 31 points (labeled in red) observed in the experiment.

Figure 3.19 are projection strength plots of the subsampled simulations and

the experiments. Each of these plots separately shows the alignment of the eigen-

vectors with the spherical harmonic basis (m, `) with value gm` . In the subsampled

simulations, there is a pair of eigenvectors strongly aligned with the (m, `) = (2, 2)

spherical harmonic basis. The 3rd & 4th eigenvectors align with (3, 3) and the 4th

& 5th eigenvectors align with (1, 1). A similar alignment appears in the experiment

for the main 6 eigenvectors.
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Figure 3.19: Projection strength map for subsampled simulation studies at Ro =
1.75, Λ = 0.055, Ek = 3.3 · 10−6 vs. experimental studies. The map shows the
alignment of the top 30 eigenvectors (in order of their corresponding eigenvalues)
with the spherical harmonics basis up to `max = 5.

3.4.2.4 Discussion

Figure 3.18 shows the mean of the simulations data compared with the experi-

mental data. Both plots have been separately normalized for comparison. It should

be noted that the magnetic field in Figs. 3.14, 3.16, & 3.18 are roughly the same.

This is because the mean field is predominantly the applied external field at m = 0.

There is not a strong comparison between the eigenvector of the simulation and

the experiment, but there is some evidence their dynamics overlap. For Ro = −1.75

in the experimental analysis of (b) in Fig. 3.15, there are two pairs of eigenvectors

(1 & 2 and 6 & 7) aligning strongly with (1, 4) and (1, 1) respectively. Interestingly,

(1, 1) appears to strongly align with the third and fourth eigenvectors of in the map

(b) of the subsample simulation data.

For Ro = −0.5, we see Fig. 3.17 has no overlap in the projection strength maps
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of the simulation vs. experiment. However, the presence of values ofm, ` ≥ 4 encour-

ages us that more probes should be used to capture the higher m and `. Also, since

the first pair in the experiment is a combination of (m, `) = (1, 2), (1, 3), (1, 4),&(1, 5),

we should consider more probes along the meridian to resolve higher degrees of `.

In Chapter 4, we will further investigate adding more probes in this proposed probe

geometry.

For Ro = 1.75 and Fig. 3.19, we see both the experiment and simulation match

well for their first four eigenvectors (somewhat for the 5th and 6th). The first &

second eigenvectors align with (2, 2) and the third & fourth eigenvectors align with

(3, 3), and then the fifth & sixth eigenvectors align with (1, 1).
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Chapter 4: New probe locations

4.1 Objective

In this chapter, we assess the potential locations for adding new probes to the

current experimental configuration of Hall probes. The current setup has a sparse

external probe configuration. The experiment has 31 probes measuring the radial

component of the magnetic field on the same radial shell. The natural approach to

get a bigger picture of the radial shell from the probe information is to use linear

regression, in following Sec. 4.2, to map them onto the spherical harmonics. This

creates a model which can evaluate the radial magnetic field component at any

location. Therefore, using linear regression, at every timestep t, a set of Gauss

coefficients is obtained to create our spherical harmonic model. For a particular

location, the radial component of the magnetic field is collected to create what we

assume to be the true distribution. Likewise, a distribution is collected by evaluating

the spherical harmonic model at the same location as the true distribution over

time. Then we measure the discrepancy of the true distribution and its spherical

harmonic model distribution using JS divergence, total variation distance, and the

Wasserstein distance. In the following studies I exclusively use simulation data in

order to capture values at potential new probe locations. We can place 15 new
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probes so I evaluate 3 different potential set ups. The results show the average and

maximum distances and divergence for each of the three configurations. We suggest

higher distance mean that the new probe location would improve on the accuracy

if incorporated in the spherical harmonic model.

4.2 Linear regression

In this section, we review the current methods for estimating the Gauss coef-

ficients from the raw magnetic field using the least-squares approach. We assume

that the unbiased data from the 31 Hall probes measures the r-components of the

magnetic field via the finite sum in Eq. (3.3). In this sum, we select `max = 4 since we

estimate `max(`max + 2) = 24 coefficients in the spherical harmonics expansion. For

31 Hall probes, this yields an overdetermined linear system which can be solved and

allows us to omit up to 7 hall probe measurements if we choose to. Note: If we want

to use `max = 5 we need at least 4 more Hall probes. To begin, we generate a basis of

Schmidt semi-normalized associated Legendre polynomials Pm
` (cos θ) evaluated at

the colatitude, θ, of the probe locations. These are multiplied by either sin(mϕ) or

cos(mϕ) at each hall probe location ϕ and multiplied by the factor `(`+ 1)
(
ro
r

)`+2

where ro = 1. In this example, we generate a 31 by 24 matrix K whose rows are

the individual pieces of the sum excluding the Gauss coefficients from Eq. (3.3)

evaluated at each of the 31 probe positions.

By using the linear regression approach we wish to estimate the Gauss coeffi-

cients g in d = Kg where d s a vector containing the Hall probe measurements of
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the r-components of the magnetic field at some time. Our goal is to minimize the

following cost function with respect to the Gauss coefficients g,

J (g) = (d−Kg)T W−1 (d−Kg) . (4.1)

In this cost function, W is the weight given to each datum according to the covari-

ance describing the accuracy of each hall probe measurement. Because we assume

that errors on different Hall probes are uncorrelated, it is simply a diagonal matrix

of the variances. Now we take the derivative of J with respect to g and find ĝ such

that,

∂J
∂g

∣∣∣
g=ĝ

= 0. (4.2)

To help with taking the derivative note the expansion is

J (g) = dTW−1d− gTKTW−1d− dTW−1Kg + gTKTW−1Kg, (4.3)

W−1 = W−T , each of the terms are equal to a some scalar α with αT = α, and the

derivative of a quadratic, α = mTBm, is

∂α

∂m
= mT (B + BT ). (4.4)
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So then

∂J
∂g

= −2dTW−1K + 2gTKTW−1K, (4.5)

0 = −dTW−1K + gTKTW−1K + λgTD, (4.6)

dTW−1K = gT
(
KTW−1K

)
, (4.7)

and

g =
(
KTW−1K

)−1
KTW−1d . (4.8)

In the special case of W = I then Eq. (4.8) simplifies to

ĝ =
(
KTK

)−1
KTd. (4.9)

4.3 Information theory

Information theory allows us to determine how much information is necessary

to transmit a message. Particularly, we are interested in how many probes and

what positioning best captures the behavior of the magnetic field in the experiment.

Our approach uses information theory and simulations to justify the placement and

number of new probes added to the experiment.

In general, a system might have levels of certainty and uncertainty in different

locations. For example, a fair coin will flip and give us a 50% probability of heads

and a 50% probability of tails. The outcome will then have some level of uncertainty

–will it be heads or tails? However what if we have a biased coin that has a 100%
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chance of landing on heads and 0% chance of landing on tails? We will always

expect this coin to land on heads with absolute certainty. There is no surprise in it

landing on heads and never on tails. A measure of the surprise in such a probabilistic

outcome, x can be mathematically described by the entropy defined as

H(P ) = −
∫
p(x) log p(x)dx = E[log p], (4.10)

for a continuous probability distribution, and for a discrete probability distribution

it is the sum,

H(P ) = −
∑
x∈X

p(x) log p(x) = E[log p], (4.11)

When the log function is base e, the information is measured in “nats” and when log

base 2 is used, the information is measured in “bits”. For our biased coin (always

heads) example,

H = − (p(0) log p(0) + p(1) log(p(1)))

= − (0 log 0 + 1 log(1)) = 0.

i.e., there is no surprise regarding the outcome of a coin toss. For our fair coin
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example,

H = − (p(0) log p(0) + p(1) log(p(1)))

= −
(

1

2
log

(
1

2

)
+

1

2
log

(
1

2

))
= −

(
1

2
(−1) +

1

2
(−1)

)
= 1.

The result is nonzero which means there is entropy or some element of surprise to

the outcome of our system. This fair coin has a uniform distribution of possible

outcomes, which is the maximum uncertainty or maximum entropy we can get out

of this particular system.

We can also compute the cross-entropy which computes the number of bits it

takes to represent the average event from one true distribution p(x) compared to

another model distribution q(x). Such a cross-entropy is defined as

HP (Q) = −
∑
x∈X

p(x) log q(x). (4.12)

An important quantification of information is the Kullback-Leibler (KL) di-

vergence [62, 63] or “information gain” that measures how much more information

there is in a distribution p(x) compared to a distribution q(x). The KL divergence

is defined as

KL(p(x)‖q(x)) =
∑
x∈X

p(x) log
p(x)

q(x)
, (4.13)
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where p(x) is the true distribution and q(x) is the model distribution. Though this

quantity returns a non-negative value, it is not a metric distance because it is asym-

metric with respect to the two arguments. It also requires that q(x) > 0 whenever

p(x) > 0. A a symmetrized version is called the Jensen-Shannon divergence [64].

Despite not being a proper metric, it is widely used because KL divergence can be

described as relative entropy,

KL(p(x)‖q(x)) = HP (Q)−H(P ) (4.14)

To see how the are the same definition, plug in Eqs. (4.11) & (4.12)

KL(p(x)‖q(x)) = HP (Q)−H(P ),

=

(
−
∑
x∈X

p(x) log q(x)

)
−

(
−
∑
x∈X

p(x) log p(x)

)
,

=
∑
x∈X

−p(x) log q(x) + p(x) log p(x),

=
∑
x∈X

p(x)(− log q(x) + log p(x)),

=
∑
x∈X

p(x) log
p(x)

q(x)
.

When we look at the three-meter simulation data sets as probabilities, like the coin

toss, they are discrete probabilities represented by snapshots of the radial compo-

nent of the magnetic field at the probe location over a time period, br(ri, φi, θi, tn)

where n is an integer from (0, N) and N is the total number of events in the tested
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sample space. The index i is the location where we wish to test the entropy of the

probe. In theory, the evolution, which is based off a continuous system of partial

differential equations (Eqs. (1.3) and (1.2)) would be a continuous probability distri-

bution. However, since it is discretized and solved numerically it is represented as a

discrete probability distribution. To compute the information gain, we must assign

a true probability distribution p(br(ri, φi, θi, tn)) and a model probability distribu-

tion q(br(ri, φi, θi, tn)). We build a model with the current 31 probes which measure

the radial component of the magnetic field br(r, θ, φ). The 31 current probes are

mapped onto Schmidt semi-normalized associated Legendre polynomials evaluated

at their positions, up to a maximum degree `max. At each time t, the least squares

approach outlined in (section 4.2) linearly solves for Gauss coefficients. Then we

have a model for new probe positions: the sum of the Gauss coefficients and the

Legendre polynomials evaluated at the new probe location can compute an estimate

of br(ri, φi, θi, t). From this we determine the model distribution q(br(ri, φi, θi, tn))

over samples from snapshots in time. The model is then compared to the true dis-

tribution p(br(ri, φi, θi, t)) which is the br(ri, φi, θi, t) at the new probe over samples

from snapshots in time. We denote each new potential probe by an index i and its

relative entropy,

KL(p(br(ri, φi, θi, t))‖q(br(ri, φi, θi, t))) =
N∑
n=0

p(br(ri, φi, θi, tn)) log
p(br(ri, φi, θi, tn))

q(br(ri, φi, θi, tn))
.

(4.15)

A proper measure can be found in the Jensen-Shannon (JS) divergence [64]. Let’s

define the pointwise mean of probabilities to be m(x) = 1
2
(p(x) + q(x)), then the
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definition is

JS(p(x)‖q(x)) =
1

2
KL(p(x)‖m(x)) +

1

2
KL(q(x)‖m(x)) (4.16)

or in our specific case,

JS(p(br(ri, φi, θi, t))‖q(br(ri, φi, θi, t))) = (4.17)

1

2
KL(p(br(ri, φi, θi, t))‖m(br(ri, φi, θi, t)))

+
1

2
KL(q(br(ri, φi, θi, t))‖m(br(ri, φi, θi, t))).

These two measures of surprise are used to determine the amount of surprise of the

ith additional probe added to the system at the location (ri, φi, θi). Probe positions

with more surprise (entropy closer to 1) are ranked higher than those evaluated to be

closer to 0 (meaning q(br(ri, φi, θi, tn)) is the same as p(br(ri, φi, θi, tn)) and there’s

no information gain). The benefit of the JS divergence over the KL divergence is it

is symmetrized and smooth. Also, in practical implementation, the KL divergence

can only be evaluated for x ∈ X when q(x) is nonzero. The JS divergence does not

have restrictions. (Note if p(x) = 0 and we have p(x) log p(x)
m(x)

, the limit as x→ 0 is

0 since p(x) converges faster to 0 than log p(x)
m(x)

to − inf).
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Figure 4.1: For parameters Ro = 1.75 and Le = 0.0013, the figure shows histograms
of the radial magnetic field simulation data p(x), the spherical harmonics model
q(x), and their pointwise mean m(x) at the location of one probe. From the figure,
we can see the portion of information left out of the JS divergence calculation due
to p(x) and q(x) not overlapping m(x).

The JS divergence is a proper measure, but for distributions that do not over-

lap, the manner that it measures can miss some portion of the information (parts

of p(x) or q(x) not overlapping of m(x)) used to assess the measure (see Fig. 4.1).

KL divergence also has this disadvantage. One option could be to assume p(x) and

q(x) are normal distributions, normalize by their mean and standard deviation, and

calculate the KL and JS divergence. Then, we could incorporate the difference in

the original means to the calculated entropies. However, this method is ad hoc,

since there is no a priori reason to expect the distributions to be Gaussian. A
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preferable measure to the JS divergence that is not complicated by non-overlapping

distributions would be the Wasserstein distance.

.

Figure 4.2: Figure 6 from [65] showing in blue the uniform distribution p and in
dashed red the uniform distribution q(x) = (x − τ). The right plot shows the
Wassertein distance, W1 (p‖qτ ), in black and the JS divergence JS (p‖qτ )

Figure 4.2 is Figure 6 from [65] which shows two nonoverlapping uniform

distributions on the left. In the right plot the Wasserstein distance and JS divergence

are calculated as a function of τ , that is, how far the uniform distributions are

separated. With the JS divergence, there is a τ (here around 2.5) in which for any

large τ , the measure loses all meaning since m(x) no longer overlaps with p(x) or

q(x). The Wasserstein distance provides a useful measure without limitations on

the distance of the distributions.

4.4 Distance functions

In this section, I will define the Wasserstein distance along with the more

straightforward total variation distance that will be used to assess how well the

spherical harmonic model encodes the magnetic field at a particular of location.

Instead of quantifying how much ‘surprise’ is captured, the goal is to compute the

distance of the model prediction from the true observation. We assume that lo-
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cations resulting in higher values for this distance would be better candidates for

new probe placements because they should improve the spherical harmonic model

estimation.

Total variation (TV) distance [66] is a measure of the maximum distance

between two probabilities assigned to a single event by their distributions. The

total variation distance of probability measures can be defined as

TV (p(x), q(x)) =
1

2

∑
x∈X

|p(x)− q(x)| = 1

2
L1(p, q) (4.18)

where L1 denotes the L1-norm.

Let’s define the Wasserstein (W1) distance [67, 68]. Also known as the Kantorovich-

Rubinstein metric [69], it is also sometimes called Earth Mover’s distance [70] despite

a slight difference in their definitions. Like KL and JS divergence, the Earth Mover’s

distance is based on physical concepts. Instead of entropy, it is computed as the

minimum amount of work required to transform our raw probe measurements to

the spherical harmonic model estimates. More specifically, it is a measure of the

amount of distribution weight that must be moved, times the distance it has to be

moved. Mathematically, W1 can be defined as

W1(p, q) = sup

{∣∣∣∣∫ hdp−
∫
hdq

∣∣∣∣ : ‖h‖L ≤ 1

}
(4.19)

with the supremum being taken over all h satisfying the Lipschitz condition |h(x)−

h(y)| ≤ δ(x, y) where δ is metric on our domain.
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4.5 Approach

We assess the potential of a new probe location using three possible measures:

JS divergence, TV distance, and the W1 distance. We exclusively use simulation

data in order to capture values at new probe locations. The experiment currently

has 31 probes measuring the radial component of the magnetic field on a radial

shell. The best way to get a higher resolution depiction of the radial shell from the

spatially sparse probe information is to use linear regression (see section 4.2) to map

them onto the spherical harmonics. This creates a model which can be evaluated at

any shell location. We will compare the radial magnetic field data from the probes

with the spherical harmonic magnetic field data.

We consider adding up to 15 new probe locations. Prior to assessing the

measures, the reasons for choosing certain locations are to i) reduce the condition

number in the linear regression model, ii) to target areas of rapid change in mag-

netic field value (e.g. positive to negative at the TC), and iii) to elucidate higher

wavenumbers m in our analysis by adding more on the equator. The tangent cylin-

der lies at the surface at 0.3 radians and 2.8 radians. Due to physical restrictions in

the experiment, only polar angles 0.56 < θ < 2.88 radians are possible on the outer

sphere, or 0.090 < θ < 0.46 radians on the lid. Figure 4.3 shows some suggested

new probes placements by team members and affiliates.
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Figure 4.3: Suggested probes locations by team members and affiliates. The contour
plots are over a shell of radial magnetic field components with the mean removed.
Original probes are in red and suggested probes are in blue. The probes in (a) are
two arrays of merdian probes with two points added off the meridian at the equator
(suggested by Artur Perevelov), (b) are two patches similar to the patches taken in
satellite imagining (suggested by Vedran Lekić), and (c) are more probes added at
the equator and close to the tangent cylinder (suggested by the author).
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The following analysis were performed on simulation runs of control parame-

ters of Ro = −1.75, Λ = 0.055, and Ek = 3.3 · 10−6. Table 4.1 reflects the means

of the scores for each type of measurement over the 15 suggested probe locations

in each configuration. From this table, the meridian line configuration scores the

highest in total variation distance with 2.65 and Wasserstein distance with 5.29.

Configuration JS TV W1

Original 0.693 1.22 2.45
Meridian lines 0.693 2.65 5.29
Patches 0.693 2.19 4.39
Equator & TC 0.671 1.26 2.53

Table 4.1: For each configuration, the table shows the averages for each type of
measurement. Tests were run by assessing the measure between the radial magnetic
field data at the prospective probe location and comparing that with the spher-
ical harmonic model (approximated from the original 31 probes) evaluate at the
prospective probe location.

Table 4.2 now depicts the maximum values for each measure and their locations

which can be seen on the subplots of Fig. 4.3. This table reveals that the maximum

TV and W1 are comparable 3.99 and 7.97, respectively, for certain locations for

the ‘meridian lines’ and ‘patches’ configurations. For the ‘patches’ configurations,

there are two patches. The one closest to the pole has the highest score values. The

‘meridian lines’ configurations has the same scores on one of the meridian lines on

the left side of the subplot.
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Configuration JS TV W1

Original HS2, MS3, E5, MN2,
HN2 (0.693)

E1 (3.99) E1 (7.97)

Meridian lines A1-A15 (0.693) A7-A13 (3.99) A7-A13 (7.97)
Patches V1, V12, V14 (0.693) V1, V2, V4, V5, V7,

V8 (3.99)
V1, V2, V4, V5, V7,
V8 (7.97)

Equator & TC S1,S2 (0.693) S1 (3.58) S1 (7.15)

Table 4.2: For each configuration, the table shows the maximum values with the
respective probe location for each type of measurement. Tests were run by assessing
the measure between the radial magnetic field data at the prospective probe location
and comparing that with the spherical harmonic model (approximated from the
original 31 probes) evaluate at the prospective probe location.

4.6 Conclusion

The results of the single probe analysis favor the ‘meridian lines’ proposed

geometry which has the highest average TV and W1 score (JS is an ineffective

measure for our analysis). Part of the advantage of this setup it there are 3 additional

probes placed along the equator as well. There should be 2mmax + 1 probes along

the equator. All the proposed geometries have at least 2 addition probes at the

equator allowing for mmax = 5. The ‘patches’ setup is tied for the highest TV

and W1 for the probes V1-V8 set near the pole. However, physical placement of

these probes at the same radii (as used for the analysis) is not possible due to

the experiment lid. Additional analysis would have to be performed knowing the

physical radial distances V1-V8 could be placed on the lid. The next step would be

to iteratively test the effect of adding the most favorable probes from the ‘meridian

lines’ configuration. This should be done two ways: i) by obtaining new Gauss

coefficients and computing the condition number and ii) by computing the W1

distance. The TV distance is somewhat redundant as it is a measure similar to W1
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distance by definition.
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Chapter 5: Machine Learning

5.1 Objective

The purpose of this chapter is to test whether machine learning tools can

predict the magnetic field variations in time. Since the experiment can provide long

time series of data without much storage or computation cost, we test our machine

learning tools on experimental data. We use an experimental set from Ro = −0.5

and Λ = 0.055 for these studies. We intend to compare how well both reservoir

computing (RC) and Long short-term memory (LSTM) network can perform on the

data of 31 probes and on the Gauss coefficients computed for the probe data.

5.2 Theory

In this section we will go over two types of recurrent neural network (RNN). In

its basic form, data is input into a neuron and activates it in two ways: i) one activa-

tion is passed forward through hidden layers and then output and ii) one activation

is passed back to be re-input with the data from the next time sample. Essentially,

the RNN has loops as seen in red in Fig. 5.1, in contrast to traditional feed-forward

architectures used in the multi-layer perceptron and convolutional neural networks.
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Figure 5.1: Recurrent Neural Network with a loop.

A linear combination (with weights wx, wh) of the output from the hidden layer

at time t−∆t and the input data, x(t), at time t, plus a bias, bh, are input into the

activation. Let f [·] be a desirable activation function. This can be formulated as

h(t) = f [wxx(t) + whh(t+ ∆t) + bh] . (5.1)

This produces an output of the hidden layer at time t, h(t), which is input into the

activation of the output node along with a bias, by, to get an output at time t. The

output is then computed by the equation

y(t) = f [wyh(t) + by] . (5.2)

In this simplest form of a scalar data value and a single hidden layer, the linear

combination of the previous layer and data input includes 2 fixed weights and a

bias which are input into the activation function of the hidden layer. The output

of the hidden layer is multiplied by a fixed weight and added to the bias before

being input into the desired activation function to get the RNN prediction at a time

t+ ∆t. For data that is not 1D (like our 31 probes) those weights become matrices
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and biases become vectors. Activation functions are nonlinear in form such as the

hyperbolic tangent function, tanh(x), used in both reservoir computing and LSTM

or the sigmoid function, σ(x) = 1/(1 + e−x), used in the LSTM recurrent step.

5.2.1 The algorithm for reservoir computing

Reservoir computing is a type of RNN. Resources for more details can be found

recently in the work of Pathak et. al [71] and originally in the work of Lukoševičius

and Jaeger [72]. The algorithm for reservoir computing has two phases: (i) the

training phase where the ‘reservoir’ is created from a sufficient pool of data as

inputs and (ii) the prediction phase where we close the loop and use the outputs of

the reservoir as inputs.

5.2.1.1 Training phase

In this stage, we aim to train our reservoir on a subset of the data that we will

call the ‘measurements’, x(t). These measurements are mapped into the reservoir

state space using the Dr × D matrix Win, where Dr is reservoir dimensions and

D is the dimension of the input, either 31 Hall probes or 24 Gauss coefficients.

Likewise, outputs from the reservoir are mapped back to the same state space as

the inputs using the function Wout(h,P), where h(t) is the reservoir state and P is

a regularization matrix.

The reservoir is updated/trained by iterating through the measurements and

combining them with the reservoir states via the fixed random sparse Dr by Dr
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matrix A, giving the new reservoir state and output

h(t+ ∆t) = tanh [Ah(t) + Winx(t)] , (5.3)

y(t+ ∆t) = Wout(h(t+ ∆t),P). (5.4)

The desired effect we want the reservoir to have is that the output y(t + ∆t) be

the same as the data, yd(t + ∆t). We do this by choosing P such that during the

training period of −Tp ≤ t ≤ 0 the following equation

∑
−Tp≤t≤0

‖Wout(h,P)− yd(t+ ∆t)‖2 + β‖P‖2 (5.5)

is minimized, where β > 0 is a regularization constant. Considering Wout is taken

linearly in P, this becomes a linear regression problem solved using standard ap-

proaches described previously. Below is a schematic for the feed forward reservoir

training.

Figure 5.2: The training phase involves training the memory of the reservoir.

s
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5.2.1.2 Prediction phase

Following the training stage is the prediction phase. The approach Jaeger and

Haas [73] used is to take the desired output to be equal to the input, yd(t+ ∆t) =

x(t+ ∆t). Now at the time of prediction, starting at t = 0, the reservoir states are

computed by

h(t+ ∆t) = tanh [Ah(t) + WinWout(h(t),P)] . (5.6)

With this, y(t) = Wout(h(t),P) functions as the input measurements, x(t), in

the training stage, except now they act as ‘predictions’ for these values. Eventually,

these predictions diverge from the truth as small errors are amplified by chaos whose

complexity cannot be captured by the reservoir. In the experiments in the next

section, I measure the error between the predictions and truth. Figure 5.3 is a

schematic for the reservoir prediction. Notice the red arrow which shows the loop of

the RC where the output is input into the network to get the next time step. That

is, x(t) = y(t) to compute y(t+ ∆t).

Figure 5.3: The prediction phase of reservoir computing. Note the input measure-
ments, x(t), have been replaced by y(t) in order to provide a prediction.
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5.2.2 The algorithm for LSTM networks

LSTMs [74] are known for their ability to capture long-term dependencies.

This architecture builds on the RNN in a way that allows for long-term memory.

Not only does it use long-term memory but it is selective about what has to be

remembered. As a reader of this thesis, you likely have not retained every single

word you have read so far but recall the context of the former chapters. We will now

go over how this is done. Recall in the RNN with each application of the neural net,

we linearly combine the input data with information intrinsic to the hidden layer.

Therefore, using some of the previous information to then generate the output. The

basic feedforward RNN process can be seen in the diagram of Fig. 5.4.

Figure 5.4: Repeating diagram showing recurrent neural network with a single layer.

Figure 5.5 is a diagram of the LSTM network. Instead of the single hidden

layer with activation tanh, there are now 4 with σ and tanh.
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Figure 5.5: Repeating diagram showing long short-term network with four hidden
layers indicated by the 4 activation functions of σ and tanh.

The addition of the horizontal line across the top of the diagram is called the

cell state. It passes this information from the hidden layer at time t − ∆t to time

t and so on. During the hidden layer operations the cell state is can modified by

pointwise multiplication and addition at the red circle which are called gates. Three

gates include a sigmoid layer and a pointwise multiplication operator and manage

which information is let through.

The LSTM takes in a linear combination of the previous output of the hidden

layer h(t−∆t) and new data x(t) plus a bias and passes it through a sigmoid function

to be pointwise multiplied by the cell state C(t− 1). So then we have

s(t) = σ (Wf · [h(t− 1), x(t)] + bf ) . (5.7)

The process is indicated by the first vertical arrow with the sigmoid function. The
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hidden layer is pointwise multplied by C(t − ∆t) and passed along the horizontal

line. The next step it to determine the new information added to the cell state by

again taking a linear combination of h(t − ∆t) and new data x(t) plus a bias and

passing that through a sigmoid function. Parallel to this, new potential cell state

values are computed by taking a linear combination of h(t−∆t) and new data x(t)

plus a bias and passing that through a tanh function. These two parallel outputs are

pointwise multiplied and then summed with the output of the first sigmoid function

pointwise multiplied by the cell state C(t−∆t) to get cell state C(t). To determine

the output, for the third time, the hidden layer h(t−∆t) and new data x(t) plus a

bias is passed through a sigmoid function. This vector is then pointwise multiplied

by tanh[C(t)] to get h(t). The equations before the pointwise multplications are,

i(t) = σ (Wi · [h(t−∆t), x(t)] + bi) , (5.8)

C̃(t) = tanh (WC · [h(t−∆t), x(t)] + bC) . (5.9)

where Eq. (5.8) is pointwise multiplied by tanh[C(t)] and Eq. (5.9) is pointwise

multiplied by i(t) and the cell state is updated from the former by the pointwise

addition,

C(t) = s(t) ∗ C(t−∆t) + i(t) ∗ C̃(t). (5.10)
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Lastly, the output is computed and the hidden layer is updated,

y(t) = σ (Wy [h(t−∆t), x(t)] + by) (5.11)

h(t) = y(t) ∗ tanh (C(t)) . (5.12)

Then the process continues for the next time step with input data x(t+ ∆t).

5.3 Results

The following two section shows the results for each RNN on the experimental

run with Ro = −0.5, Λ = 0.055, and Ek = 3.3 ·10−8. Sections below show the RNN

parameters used in the studies. Figures are also shown to contrast the prediction

and the true measurements of both the data and the spherical harmonic coefficients.

Error is quantified by the L2-norm of the difference between the real data and the

RNN prediction.

5.3.1 Reservoir computing

The reservoir was trained on 80% of the magnetic field data from a time series

of 671 rotations. It was first normalized, stored as the truth, and then 1.5% error

was added before training the reservoir. Table 5.6 shows the parameter set for the

following RC prediction results.
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Parameter Value

Dr 3000
average degree 3
λ 0.6
β 10−4

Figure 5.6: Table of the parameters that can be adjusted to optimize the network.
Dr is the adjacency matrix A size and ‘average degree’ refers to the sparsity. The
spectral radius of A is scaled to λ. Lastly, the term β is the regularization parameter.

The first results seen in Figs. 5.7 & 5.8 are produced by training on the mea-

surements from the 31 Hall probes. The second set of results, Figs. 5.9 & 5.10, are

produced by training on the 24 Gauss coefficients obtained by using linear regression

on the 31 Hall probe data.

5.3.1.1 Hall probe data

Figure 5.7 shows the time series of 31 Hall probes during the time of the

prediction phase. The top subplot is the RC prediction, the middle subplot is the

true data, and the bottom subplot is the truth subtracted from the predicted data.

The L2-norm of the displayed error is 252.9.
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Figure 5.7: Time series in time steps of the normalized r-component of the magnetic
field from 31 Hall probes. From top to bottom: (i) reservoir prediction using noised
test data, (ii) the true values, and (iii) the difference between the predicted and
truth. The norm of the error is 252.9.

We take a closer look at the comparison between the prediction and the true

data for a single probe in Fig. 5.8. There appears to be some agreement between 77.8

& 78.2 seconds but outside that interval, the main phases between the experiment

and prediction do not overlap.
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Figure 5.8: Time series of the normalized r-component of the magnetic field from
a single hall probe of the reservoir prediction using noised test data (blue) and the
true values (green).

5.3.1.2 Gauss coefficient data

Figure 5.7 shows the time series of 24 Gauss coefficient during the time of the

prediction phase. The top subplot is the RC prediction, the middle subplot is the

true data, and the bottom subplot is the truth subtracted from the predicted data.

The L2-norm of the displayed error is 204.2.
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Figure 5.9: Time series of the normalized 24 Gauss coefficients of the mag-
netic field. From top to bottom: (i) reservoir prediction using noised test
data, (ii) the true values, and (iii) the difference between the predicted and
truth. The norm of the error is 204.2. The Gauss coefficients are orga-
nized from top to bottom grouped by ` with m in pairs of cosine and then
sine. So m = 0, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 2, 2, 3, 3, 0, 1, 1, 2, 2, 3, 3, 4, 4 and ` =
1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4.

In Fig. 5.10 we examine the time series of the Gauss coefficient, G1,s
1 , to view

the contrast between the truth and prediction. Again there appears to be some

small window agreement in the middle of the prediction, this time between 77.2 &

77.7 second. Otherwise, the coefficient prediction and truth are not in phase.
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Figure 5.10: Time series of the normalized m = −1, ` = 1 of the magnetic field from
a single hall probe of the reservoir prediction using noised test data (blue) and the
true values (green).

5.3.2 LSTM

In this section we compare the best results of the reservoir computing to the

best results of a simple LSTM. This is a simple LSTM built using keras with 50

neurons in the first hidden layer and 31 neurons in the output layer. The training

uses the Mean Absolute Error loss function and Adams gradient descent. It is

trained for 50 epochs batch sizes of 72.
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5.3.2.1 Hall probe data

Figure 5.11 shows the time series of 31 Hall probes during the time of the

prediction phase. The top subplot is the LSTM prediction, the middle subplot is

the true data, and the bottom subplot is the truth subtracted from the predicted

data. The L2-norm of the displayed error is 137.6. This is a significant improvement

in error from the RC computing error. We can a good match from the diagonal wave

in both the prediction and truth plots.

Figure 5.11: Time series of the normalized r-component of the magnetic field from
31 Hall probes. From top to bottom: (i) simple LSTM prediction using noised test
data, (ii) the true values, and (iii) the difference between the predicted and truth.
The norm of the error is 137.6.

Now for a closer look. Figure 5.12 shows a time series of both the prediction

and true radial magnetic field component of a single probe. The prediction captures

the main wave but does not resolve the more extreme variations. Thus the variation

of the prediction is much smaller than the truth.
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Figure 5.12: Time series of the normalized r-component of the magnetic field from
a single hall probe of the LSTM prediction using noised test data (blue) and the
true values (green).

5.3.2.2 Gauss coefficient data

Figure 5.13 shows the time series of 24 Gauss coefficient during the time of the

prediction phase. The top subplot is the LSTM prediction, the middle subplot is the

true data, and the bottom subplot is the truth subtracted from the predicted data.

The L2-norm of the displayed error is 128.8. Like the RC computing predictions, the

LSTM prediction are slightly better on the Gauss coefficients than the Hall probe

data.
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Figure 5.13: Time series of the normalized 24 Gauss coefficients of the mag-
netic field. From top to bottom: (i) simple LSTM prediction using noised
test data, (ii) the true values, and (iii) the difference between the predicted
and truth. The norm of the error is 128.8. The Gauss coefficients are or-
ganized from top to bottom grouped by ` with m in pairs of cosine and
then sine. So m = 0, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 2, 2, 3, 3, 0, 1, 1, 2, 2, 3, 3, 4, 4 and ` =
1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4.

In Fig. 5.12 we notice that the LSTM prediction does well for the main wave

in a single probe time series. In Fig. 5.14 we look at the times series of a larger

wave though the Gauss coefficient, G1,s
1 , to view the contrast between the truth

and prediction. The oscillations in the prediction aligns very well with the truth.

Compared to Fig. 5.12, the variation of the truth is only slightly larger than the pre-

diction. From this, we can confirm that the LSTM network does well for predicting

long-term dependencies like the main wave in the experiment.
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Figure 5.14: Time series of the normalized m = 1, s, ` = 1 of the magnetic field
from a single hall probe of the LSTM prediction using noised test data (blue) and
the true values (green).

5.4 Conclusion

The LSTM network does the best for predicting the experimental data at least

for the larger scale wave. The neural nets do not perform well on small variation, at

least for the length of training and testing time windows shown here. This could be

because the 31 probes restrict us to perhaps 24 degrees of freedom rather than the

10,000+ degrees intrinsic to the turbulent system. The most successful approach

was the simple LSTM which appears to predict the long-term dependencies such

as the rotation of the experiment (which is fairly simple to model). Future efforts
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to improve RC should be to sample subsets of data from the full set and train the

network as keras does in batches. Since the method has some stochasticity in the

generation of the initial adjacency matrix and Win, it may be fruitful to research

ways to take advantage of that.

More future work includes (i) installing many additional Hall probes or (ii)

using synthetic data. In order to answer ‘how many?’ and ‘where to place them?’,

I plan to use synthetic data from a numerical model to assess the exact number of

measurements needed to allow reliable prediction with NN and data assimilation.

Multi-scale hybrid methods might be suitable to separate the small scales from the

main rotation in the sphere. Right now, because of the low-dimensionality of the

data, it seems everything small scale is treated as noise compared to the rotation.

Provided enough prediction data, further analysis could be done from here by

looking at the spectra of the prediction to see if the the magneto Coriolis modes

appear or if its just the main rotation that the NNs pick up. I would have also like to

compare the spherical harmonic prediction projected back onto the hall probe loca-

tions. Though the experiment has few spatial measurements, it does have the ability

to capture sufficient of data in time relative to its intrinsic timescales. Something

that we will be waiting for with Earth for tens of thousands of years.
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Chapter 6: Conclusions and potential future work

6.1 Conclusion

This thesis introduces the significance of the geodynamo and the difficulty

studying it due to the inaccessibility of measurements and limited data in time. I

then motivate the advantages of studying the mechanical 3m over the geodynamo.

Still, experimental data of the velocity field and internal magnetic fields elude us as it

is dangerous to place measurements inside the experiment. The simulations provide

a mean to capture full 3D fields. In Chapter 2, we explore the behavior in three

different set of control parameters that belong to two different dynamical states: the

inertial mode state and high torque state. For the first time, we can see how the

fields fluctuate and the movement of the bulk flow inside the 3m experiment. The

radial correlation simulation studies show the correlations between poloidal magnetic

field on the radial shell where probes would reside and poloidal magnetic fields in

the interior. Same with correlations between poloidal magnetic field of probe shell

and the toroidal velocity field in the interior. For the Ro = −0.5 in particular,

there are strong correlations of the poloidal probe shell for m = 1 with both the

poloidal magnetic field and toroidal velocity field. For larger |Ro| the correlations

are weak with depth. In the high torque case, the correlations in the magnetic
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field vs. magnetic field appear only subtly for r < 0.75ro. The magnetic field vs.

velocity field barely correlates at 0.95ro. Therefore, it the surface measurement can

be representative of the internal workings at least for shallow measurements near

the surface and low |Ro| for measurements at greater depth.

In chapter 3, we aim to match the experiment and simulations using their PCA

analysis. The basis of spherical harmonics should be detected by the 31 probes at

least to `max = 4. By viewing the spatial eigenvectors of simulations, we can see

`max = 4 is not large enough to capture the large scale variation in the magnetic

field measured at the surface. We can also note that the experiment is very noisy.

In the spectra of the dominant temporal eigenvector of Ro = −0.5, any frequency

larger than f/fo = 2.5 in the experiment is noise. Also, for Ro = −0.5, we see

the experiment aligns with a combination of spherical harmonic basis functions that

encourage the placement of new probes in a meridian line. The experimental and

simulation match best in main six eigenvectors for Ro = 1.75.

In chapter 4, several new probes configurations were tested on simulation data

using the raw data and comparing it with data recreated from Gauss coefficients.

These studies used several measures including the Wasserstein distance. From our

assessment, the best new probe locations would be to place them on two new merid-

ian arrays.

In chapter 5, we test two types of RNN on one set of experimental data. The

most successful approach was the simple LSTM but that predicted well the rotation

of the experiment. Due to the high levels of noise found in chapter 3, it is likely

the RC have difficultly training and distinguishing between noise and small scale
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spherical harmonics from the MHD flow.

6.2 Potential work

At the beginning of this thesis, I mentioned there are two possible external

magnetic field setups: dipolar and quadrupolar. I choose the quadrupolar magnetic

field because I found it interesting. The simulations should also be tested on the

dipole external magnetic field configuration. Dipolar simulations would be more

geodynamo-like.

6.2.1 Coupled PCA

In Chapter 3, I mentioned the positive aspects of coupled PCA. In Kutzbach’s

work [61], he was able to explain 80% of the variance with 6 eigenvectors from

coupled PCA with for monthly mean sea-level pressure and surface temperature

whereas the same amount of variance was explain by a total of 8 eigenvectors of

the PCA of the two field separately. More information could be ascertained from a

PCA of the coupled velocity and magnetic fields but then non-standard version of

PCA must be used to the large amounts of data. Techniques such as a randomized

version of the block Lanczos method can be used for performing PCA on large data

sets [75].
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6.2.2 Data assimilation

Data assimilation has been implemented on the geodynamo model [29, 30, 76,

77, 78] Based on prior geodynamo Data Assimilation studies [30, 78] an Observation

Simulation System Experiment (OSSE):

1. Compute the e-folding time [79] by observing the exponential growth of noisy

Gaussian ensemble members. Use this to estimate assimilation window.

2. Take snapshots of a simulation run at times greater than the e-folding time to

use as the initial ensemble.

3. Generate synthetic observations for a window of about 2 e-folding times.

4. Assimilate observations.

The measure of e-folding time of the exponential growth, τe determines the

rate single dominant error growth rate λ = τ−1e . Hulot et al. found that this

growth rate varies depending on each set of control parameters Ek, Pm, and those

associated with the geodynamo thermal properties [79]. I attempted to capture the

e-folding time by adding 1% of the magnetic field rms value to the magnetic field

for parameters Ek = 3 · 10−6, Ro = −0.5, and Le = 0.013. Any larger added error

caused bad spectral convergence. Then I computed the trace of the covariance of

these ensembles over time. To get the τe, I fit the time and traces of the covariance

to the exponential curve: tr(Covariance) = et/τe . My attempts for these control

parameters didn’t produce a spread that increased in time. Part of what might have
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gone differently with the 3m simulations vs. geodynamo simulations is the difference

in parameters (see Table 1.3). I believe the forcing terms of the experiment (driving

shear from the shell, the applied external field) the simulations converge to a statistic

equilibrium and there is no exponential growth from which to calculate the e-folding

time.

For someone who wants to try it, I can provide initial conditions of my runs.

I suggest running from control parameters in the high torque state. First, make

sure you have plenty of storage space since you will need multiple ensembles and

field outputs for each to compute the e-folding time. Next, initialize the run with

more radial shells and increase `max and mmax. Adding error can cause poor spectra

convergence so a finer resolution will help with spectral convergence. Next at 1%

(or even 0.1%) of the rms error a shell or a point in the magnetic field. Run over

several rotation times, saving sufficiently many outputs to determine the e-folding

time. Ideally, there will be an ensemble spread and you will be able to determine

the dynamically timescales from the e-folding time which can be used to determine

how often observations are needed and the size of the assimilation window.

Another important aspect, to study prior to implementing data assimilation is

localization. Localization reduces the effects of spurious correlations in the data as-

similation weather modeling framework (i.e. weather in Maryland is not affected by

weather in Russia, so separate local analysis is preferable). In the work of Sanchez

et al. [30] which inspired correlation studies, they analyze a time series of a geeody-

namo model. They look at localization in terms of the spectral coefficients as done

in Sec. 2.6 as well as in (r, θ, ϕ)-space. In the end they concluded that localization
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in spectral space is preferable to real space. A similar localization study should

be carried out in order to strategically localize and implement a data assimilation

technique like the local ensemble tranform Kalman filter [80].

6.2.3 Machine Learning

There are a wealth of new machine learning techniques and variations on

LSTMs. Preprocessing of the data to remove the largest wave could improve on

LSTMs prediction of the smaller features. More complexity in hidden layers might

improve on the prediction of the probes in time. Also, with the right amount of

storage to collect the simulation data, a combination of training on the simulation

data and testing on the real experimental data could be implemented. One advan-

tage the 3D data has is it can help us predict into the interior magnetic and velocity

field from the exterior where the radial probes are setup. Synthetic data could

be created from the simulation by extracting the magnetic field at various depths

and calculating the field outside the domain at the probe radius. Noise would be

added to represent the noise intrinsic to the experiment. A convolutional neural

network (CNN) could be trained and verified on the synthetic data and then tested

on the experimental data. In the recent paper of Bolton and Zanna [81], a CNN

was trained to predict subsurface stream function data from surface stream function

data. Lastly, an ambitious thing to try would be to combine the prediction power of

LSTM with the CNN abilities to reveal subsurface flows to predict a 3D magnetic

field and velocity field in time.
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[28] Patrick Alken, Erwan Thébault, Ciarán D Beggan, H Amit, J Aubert, J Baeren-
zung, TN Bondar, WJ Brown, S Califf, A Chambodut, et al. International ge-
omagnetic reference field: the thirteenth generation. Earth, Planets and Space,
73(1):1–25, 2021.

[29] Weijia Kuang, Zigang Wei, Richard Holme, and Andrew Tangborn. Prediction
of geomagnetic field with data assimilation: a candidate secular variation model
for igrf-11. Earth, planets and space, 62(10):775–785, 2010.

[30] Sabrina Sanchez, Johannes Wicht, and Julien Bärenzung. Predictions of the
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