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The dynamo action is the process through which a magnetic field is amplified and sustained

by electrically conductive flows. Galaxies, stars and planets, all exhibit magnetic field amplification

by their conductive constituents. For the Earth in particular, the magnetic field is generated due

to flows of conductive material in its outer core. At the University of Maryland, our Three-

meter diameter spherical Couette experiment uses liquid sodium between concentric spheres to

mimic some of these dynamics, giving insight into these natural phenomena. Numerical studies

of Finke and Tilgner (Phys. Rev. E, 86:016310, 2012) suggest a reduction in the threshold for

dynamo action when a rough inner sphere was modeled by increasing the poloidal flows with

respect to the zonal flows and hence increasing helicity. The baffles change the nature of the

boundary layer from a shear dominated to a pressure dominated one, having effects on the angular

momentum injection. We present results on a hydrodynamics model of 40-cm diameter spherical



Couette flow filled with water, where torque and velocimetry measurements were performed to

test the effects of different baffle configurations. The selected design was then installed in the 3-m

experiment. In order to do that, the biggest liquid sodium draining operation in the history of the

lab was executed. Twelve tons of liquid sodium were safely drained in a 2 hours operation. With

the experiment assembled back and fully operational, we performed magnetic field amplification

measurements as a function of the different experimental parameters including Reynolds and

Rossby numbers. Thanks to recent studies in the hydrodynamic scale model, we can bring a

better insight into these results. Torque limitations in the inner motor allowed us to inject only 4

times the available power; however, amplifications of more than 2 times the internal and external

magnetic fields with respect to the no-baffle case was registered. These results, together with

time-dependent analysis, suggest that a dynamo action is closer than before; showing the effect

of the new baffles design in generating more efficient flows for magnetic field amplification. We

are optimistic about new short-term measurement in new locations of the parameter space, and

about the rich variety of unexplored dynamics that this novel experiment has the potential to

reach. These setups constitute the first experimental explorations, in both hydrodynamics and

magnetohydrodynamics, of rough boundary spherical Couette flows as laboratory candidates for

successful Earth-like dynamo action.
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El mundo necesita humanidad, la humanidad que tú tienes. Eres el Teseo de mi Asterión, que me
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Chapter 1: Introduction

1.1 Motivation

Perhaps one of the most important physical phenomena for the livelihood of humankind on

Earth is the existence of a magnetic field surrounding the planet. This magnetic field protects life

from the deadly solar radiation, and acts as a shield against the accelerated charged particles

constantly launched from the Sun. It was believed that the origin of the field was due to a

permanent magnet inside the Earth; however, the inside of the Earth is at much higher temperatures

than the Curie temperature of the iron core, which is the point where all ferromagnetism is lost.

In 1919, Joseph Larmor hypothesized that the magnetic field of the Sun was due to the motion

of conductive liquid fluid inside. This was the first time that the notion of conductive flows

sustaining a magnetic field was considered.

The origin of the Earth’s magnetic field is also a topic that continues to generate discussion

throughout the scientific community. Though, there is a consensus about where it is generated:

the outer core - an ocean of an iron-nickel alloy between the solid inner core and the solid mantle.

The liquid composition of the outer core was hypothesized by Danish seismologist Inge Lehman

in 1929, and it has been later corroborated by seismic measurements. It constitutes our current

model of study. However, the inaccessibility of this region on Earth makes us completely reliant

on remote observation and sensing for further and deepening the existent knowledge about the
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core’s composition and dynamics, leaving us with relatively limited data.

The theoretical problem of the Earth’s magnetic field generation is also of high difficulty

to solve. The Navier-Stokes equation that governs the fluid motion in the outer core is known to

have no analytical solution, particularly for planetary, and even laboratory scales. Additionally,

due to the wide range of spatial scales involved, the numerical approach is one of limited scope.

Although progress has been made, we are still a few orders of magnitude away from resolving

the problem for these scales. The major barrier is the existence of a threshold for the generation

of the magnetic field. This threshold is, ironically, in the nonlinearities of the system; meaning

that we need more turbulent flows (more complex and difficult to resolve) in order to generate

a self-sustained magnetic field similar to the Earth’s. This is the same complexity that makes

numerical resolution difficult. Hence, the arrival of the experiments.

The first attempts to generate a magnetic field in the laboratory due to conductive flows

started with very limited geometries: twisted pipe flows were used to generate the topologies

required to sustain a magnetic field Benton [15]. More complex, and less restricted geometries

followed up with cylinder-like type of flows Gailitis et al. [16], Bourgoin et al. [17]. The ultimate

desired geometry for experiments is perhaps a spherical one, that resembles more accurately the

Earth’s dynamics. Unfortunately, with less constraints and less controlled flows, comes greater

experimental difficulties.

This process of a self-sustained magnetic field generation seen in many planets, stars and

galaxies, due to rotating turbulence of their conductive constituents, is formally known as the

dynamo action. It can be thought of as a competition between Faraday induction and dissipation

due to electrical resistance. The former drags, stretches, twists, and amplifies the magnetic field,

while the latter transforms the electric currents into heat at smaller scales. They are determined
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respectively by the momentum diffusivity ν (kinematic viscosity) and the magnetic diffusivity η

(inversely proportional to the electrical conductivity). The ratio of these two numbers is known

as the magnetic Prandtl number Prm = ν/η, and is small for all liquid metals.

Despite the numerical difficulties, dynamos have been simulated before [18, 19, 20, 21, 22].

However, the parameters involved in these simulations are very different from those of the Earth

or even the experiments. For instance, simulations tweak the conductivity of the flows to ease

dynamo action. This is observed in the magnetic Prandtl number Pm (defined in more details

in Section 3.5): simulations run at Pm = 1 whilst Earth’s Prandtl number is closer to 10−5.

Another dimension that we cannot match, not even in experiments, is the length scale. This

affects significantly the Coriolis forces observed in the system, which are known to be one of the

most important drivers of planetary dynamics. The effect of Coriolis forces is indicated by the

dimensionless Ekman number Ek (the ratio of viscous to Coriolis forces. See section 3.5). This

number in simulations and experiments is as much as nine orders of magnitude greater than that

of the Earth.

All these mismatches of the parameters between the simulation and the real astronomical

bodies, motivate a global attempt to bridge this gap using experiments. In particular, there is an

ongoing global attempt to replicate Earth-like magnetic field dynamos in the laboratory [4, 23,

24, 25] with realistic turbulence that cannot be achieved by current simulations.

Spherical Couette flows are flows between two concentric spheres that rotate differentially.

They are a useful model to study rotating turbulence, particularly, in the context of planetary

dynamics [26, 27, 28], given the resemblance of the geometry in the cores. The solid inner

sphere mimics the inner core boundary, whilst the outer sphere mimics the mantle-core boundary.

Shear forces at the surfaces, and Coriolis forces due to the global rotation, drive and shape the
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motion of the fluid between the spheres, similarly to the more widely explored cylindrical Taylor-

Couette flows [27, 29, 30, 31, 32, 33]. However, there is another important mismatch: the Earth’s

inner core does not rotate significantly with respect to the outer core. The driven mechanism

for dynamo generation in the core is known to be a combination of the following: convection,

due to thermal gradients; buoyancy, due to constant solidification of the inner core (and a sort of

inverse rain from the outer core towards the mantle) and Coriolis forces due to global rotation

(check for instance Merrill et al. [34]). However, there is a analogy between thermal convection

and shear turbulence which has been studied in the context of Taylor-Couette versus Rayleigh-

Bérnard convection that has been extensively reported in the bibliography [35, 36, 37? ]. See

for instance Prigent et al. [38] for an overall summary. The analogy, in simple words, states

that at high Reynolds numbers (very turbulent flows) the nature of the turbulence of Taylor-

Couette and Rayleigh-Bérnard flows is statistically equivalent. This comes in handy for the

experimentalists who now see rotating flows as a suitable candidate to replace thermal convection

with shear flows as the dynamo driving force. Spherical Couette dynamos have also been found

extensively in numeric simulations, and the parameter range exploration continues to grow every

day [9, 11, 18, 19, 20, 21, 22, 39, 40].

1.2 Background and Prior Work

Experimental dynamos have been found in the laboratory in restricted geometries such as

the ones of Riga [16] and Karlsuhe [41]. These successes proved theoretical predictions about

a self-excitation in the magnetic field due to a well organized flow, and motivated the search of

dynamos in less confined, more Earth-like geometries and turbulence like in spherical Couette
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Figure 1.1: The spherical 30 cm diameter apparatus and characteristic induced magnetic field
instability patterns. The device (a) consists of a thin stainless spherical outer vessel, a rotating
inner copper sphere, and liquid sodium in between. The resulting dynamics change character
under the influence of an externally applied magnetic field coaxial with the rotation are shown in
(b-c). From [2].

flows. Spherical experiments attempting Earth-like dynamos and exploring magneto-turbulence

include the one in Madison at the University of Wisconsin, USA [23] and the DTS spherical

Couette flow in Grenoble, France [24, 25]. Other experiments, like the Von Karman sodium

experiment [42] and the DRESDYN experiment in Dresden, Germany [43] use a cylindrical

geometry. The former successfully achieved a dynamo using ferromagnetic impellers as main

driver of the flow.

At the University of Maryland we have built a series of different spherical Couette Flows

experiments during almost 30 years, with the intention of studying magnetohydrodynamics (MHD)

and eventually generate a dynamo in this Earth-like configuration. This is why all our experiments

are intended to mimic the aspect ratio of the Earth’s core of Γ = ri/ro = 0.35. We use liquid

sodium as the conductive flow since it is the liquid metal with the highest conductivity and it

melts at 97 C which is a reasonably achieved temperature for experimental purposes. However,

handling sodium is extremely dangerous due to its reactive, toxic, corrosive and inflammatory
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properties. Sodium needs to be kept in a neutral atmosphere, for which we used nitrogen as an

inert gas. Sodium oxidizes rapidly, the oxidation can be observed in real time. The reaction

takes the oxygen in the air and leaves behind different types of sodium oxides which are toxic,

corrosive, and irritating to the skin and eyes. The reaction of sodium and water is particularly

dangerous; it leaves behind hydrogen gas in high concentrations, which is volatile, and the

reaction is exothermic. The consequence could be a detonation that sends into the air liquid

sodium and oxide traces. Hence, extreme measures are constantly being taken to guarantee the

optimal performance of the experiment and the safety of the team.

The first experiment of this series had 30 cm in diameter [2] and was able to reach a

magnetic Reynolds number of Rm ∼ 25. By that time, that parameter space was relatively

unexplored. This experiment reported the first experimental observation of Magnetorotational

Instability (see for instance Chandrasekhar [35]) but did not shield a dynamo.

The second experiment of the series is a 60 cm outer diameter spherical Couette. This

experiment observed inertial modes [44] in a spherical geometry. The setup was also used to

study thermal convection in spherical Couette geometries, but it did not succeed in generating the

necessary velocity scales for dynamo action. However, it showed very interesting results. [45].

Finally we arrive at the 3-meter diameter spherical Couette experiment (3-m) [4, 46, 47].

It is, like its predecessors, intended to mimic the aspect ratio of the Earth’s core of Γ = ri/ro =

0.35, where ri = 0.51 m and ro = 1.46 m are the inner and outer sphere radii of the experiment.

The boundaries of both spheres were originally smooth with only a characteristic roughness due

to the unpolished stainless steel material from fabrication. The 3-m experiment approximately

matches Earth’s magnetic Reynolds numbers of Rm ≈ 900, Re ≈ 109, and works with liquid

sodium, which has a Prm ≈ 10−5. An external dipolar or quadrupolar magnetic field can be
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Figure 1.2: The spherical 60 cm diameter apparatus and characteristic induced inertial modes
spectrograms. From [3].

applied by electromagnets in the axial direction, with an intensity up to 200 Gauss at the center

of the experiment.

This is the biggest rotating liquid sodium experiment in the world to date, which despite

matching many parameters of the Earth’s core, has not yielded a magnetic dynamo. However, the

experiment has shown very interesting phenomena for the geophysics community such as inertial

modes [48] and precessional states [47]. Additionally, phenomena of significant interest for the

non-linear and astrophysics community such as the bi-stability states [46] have been reported for

the first time in this geometry.

The 3-m experiment experiment has shown an significant amplification of the magnetic

field in the azimuthal direction up to 8 times the externally applied magnetic fields (see Figure

1.3 and work by Zimmerman et al. [4]). It has, additionally, shown amplification of 10− 30% in

the internal radial direction [4]. These results, especially the latter, are significant for dynamo in

the laboratory. In order to understand their importance, we need to elaborate on the mechanism

of its generation.
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Figure 1.3: The spherical 3-m diameter apparatus. Real (left) and schematic (center). On the
right we see results from Zimmerman et al. [4] where amplification of the internal fields (B/bs0)
is shown for different runs.

Theoretical dynamo studies [8, 49] indicate that electrically conductive flows can drag and

stretch the external magnetic field lines. The general idea behind the dynamo action is that a

seeded (generally weak) magnetic field is stretched and amplified by the conductive flows in

such a way that can be fed back into the original applied direction. This process closes the loop

for a somewhat feedback process.

One fundamental model for this process is known as the αω-dynamo [50, 51, 52] shown

schematically in Fig 1.4: a magnetic field applied in the axial direction is stretched in the

azimuthal direction due to shear forces in the form of differential rotation (Ω-effect) and then

twisted back into the meridional directions due to the helical component of the turbulence (α-

effect). For the purpose of this dissertation, we interpret meridional flows as an indicator of the

strength of the three-dimensional poloidal flows. The turbulence responsible for the α-effect can

be connected with the vorticity of the meridional flows, which combined with the azimuthal flows

responsible for the Ω-effect, give rise to helicity (defined more carefully in section 2.1.3). In the

αω-dynamo then, the helicity is dominated by vorticity from the poloidal/meridional flows:
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Figure 1.4: Schematic representation of the alpha-omega dynamo. An applied external magnetic
field (blue arrows) (a) gets stretched by a differential rotation (b) in the azimuthal direction of
the experiment (c), then turbulent and helical flows (d) twist the magnetic field lines back in the
direction of a dipole (e), which is the direction of the original applied magnetic field (a), closing
the cycle for the amplification process. Adapted from a diagram in [5]

H ≈
∫
V

uφ · (∇× um) dV =

∫
V

uφωφ dV, (1.1)

where the subindexes φ and m stands for azimuthal direction and the meridional plane respectively,

and ω = ∇× u is the vorticity.

Many authors have elaborated on the key role played by helicity in dynamo action. In

particular, Nakajima and Kono [53] proposed that maximizing helicity is strongly correlated with

the efficiency of a flow in producing dynamo action. Love and Gubbins [54] and Khalzov et al.

[55] commented on the connection between helicity and the ratio of poloidal to rotational motion

and its influence on dynamo instability. Further studies support these notions in different flows

and geometries [56, 57, 58, 59, 60, 61]. The relative small amplification of the field observed

in the 3-m experiment in the radial direction is evidence of this effect. Flows in the meridional

directions ((r, θ)) of the experiment may be responsible for dragging the field into this direction

(see Figure 1.4) completing the loop for the feedback process. These results indicated then a

substantial Ω-effect but a limited α-effect [4]. Hence, increasing the meridional flows and their
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vorticity, together with the azimuthal flows, would be an effective way of achieving more helical

flows in the experiment, thus enhancing the α-effect.

In Couette flows, energy and angular momentum are injected into the fluid through the

boundary layers. Many recent works have tested the roughness in the boundaries of rotating

experiments, mainly Taylor-Couette flows. Adding roughness to the inner boundary changes the

boundary layer from viscous-coupling to fully pressure-dominated [10, 62, 63], which provides

a more effective transfer of angular momentum to the fluid and could favor injection of flow in

the meridional directions. Numerical work by Finke and Tilgner [10] examines this directly in

the context of Spherical-Couette flows. In their work, a rough inner sphere, modeled using a

body force, was simulated numerically. They found that such body force increases the coupling

between the inner sphere and the fluid, resulting in a stronger equatorial jet, therefore increasing

the poloidal flows. This new configuration lowers the threshold in the parameter space for

achieving dynamo action by a factor of approximately five.

In order to better examine this process before performing long-lasting modifications in the

3-m experiment, we decided to work in a smaller water experiment to study for the first time

the hydrodynamical properties of spherical Couette flows with rough boundaries. One of the

goals was to extrapolate these results into the parameter space of the 3-m experiment to guide

its redesign; however, we found important properties in the dynamics of rough spherical Couette

flows and compared them with previous numerical simulations and experiments, including in

Taylor-Couette flows. The results obtained with the 40-cm experiment allowed us to plan modifications

in our 3-m experimental setup, not only regarding inner motor power specifications but also final

baffle design.

With that information in hand, we would be better prepared towards modifying the 3-m
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experiments to induce more helical flows that would take us closer to achieve dynamo action.

These two experiments would be the first ever experimental measurements of rough boundary

spherical Couette flows, both in the context of hydrodynamics and magnetohydrodynamics.

1.3 Outline of this dissertation

We start by lining up the most fundamental theoretical notion required to understand the

motivation behind this dissertation. We begin the section with some basic hydrodynamics concepts,

then the basics of magnetohydrodynamics. Finally, we address the problem of the dynamo action,

specifically in spherical geometries.

In chapter 3 we describe the 40-centimeter diameter spherical Couette experiment. This

experiment was initially assembled by Till Zurner with the collaboration of this author. The inner

motor and electronics, including data acquisitions instruments, were installed by the author of

this dissertation. To add roughness we test baffles attached to the inner sphere from pole to pole,

in a similar way as done previously in Taylor-Couette flows [31, 63]. Additionally, we try several

heights and shapes of baffles to contrast their different effects on the dynamics of the flows.

Results include torque measurements from the inner motor as a function of Reynolds and Rossby

numbers (Section 3.2.1), and velocimetry using particle tracers and Particle Image Velocimetry

(PIV) in both the equatorial and meridional planes (Section 3.2.2).

Chapter 4 is then a story line of the steps and decisions taken during the remodeling stage

of the 3-m experiment. This chapter is motivated, not only as a record of the goals achieved in the

present dissertation, but also as a written journal for the incoming graduate student who might

face themselves with similar challenging situations. We hope that this chapter serves as a guide
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to address some of these difficulties.

In chapter 5 we finally show preliminary results of the remodeled baffled 3-m experiment

and compare them with previous data with smooth inner sphere taken by Daniel Zimmerman,

Santiago Triana, Matthew Adams and Doug Stone. These results include torque data, as in the

40-cm experiment, and magnetic data. We divide the latter in Mean Measurement and Time

Dependent Measurements. One particular difference with previous results that we implemented,

was to try to perform ramps in the parameter space changing only one of the dimensionless group

while leaving the other one constant. It is known that the dynamics of the rotational experiments

could be separated into Rossby number dependence and Reynolds number dependence. Although

other numbers can be used, these are the main two we use throughout this dissertation.

Finally, we summarized the main results and proposed steps for the immediate future of

this research project. Even though this doctoral dissertation work left important results towards

a dynamo generation in spherical Couette flows, perhaps the most important contribution for the

next generation of students is that, for the time these lines are being written, the experiment is

working finally after 5 years of modifications and repairs.
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Chapter 2: Theory Fundamentals

2.1 Hydrodynamics

2.1.1 Navier-Stokes equation

Let us begin with the well known Navier-Stokes Equation 2.1 that governs the fluid’s

motion:

∂u

∂t
+ (u · ∇)u = −∇(p/ρ) + ν∇2u , (2.1)

where u is the velocity field, p is the pressure, ρ is the density of the fluid and ν its kinematic

viscosity. A derivation can be found in any fluid mechanics book, see for instance [64, 65, 66].

We will also use, for the rest of this dissertation, the no-slip boundary condition for the

velocity field at the boundaries (u|S = 0, and the assumption that the fluid is incompressible, the

so called continuity equation (because its incompressibility implies mass conservation):

∇ · u = 0.

From left to right the terms in the Navier-Stokes equation describe: 1) the change in time

of the velocity field u, 2) the acceleration of the fluid element by the spatial rate of change of its

13



velocity field (advection), 3) the acceleration due to the spatial change in the pressure, and 4) the

diffusion into thermal energy due to the viscous forces in the fluid. Additionally, if there is any

external force applied to the fluid, it will appear balanced into the Navier-Stokes equation as we

will see later on.

2.1.2 Vorticity

Apart for the treatment of the fluid by its streamlines, or lines of constant modulus of the

velocity |u|. It is useful for the sake of this dissertation to talk about the vorticity of the fluid

flow. This is defined as the curl of the velocity field:

ω = ∇× u. (2.2)

Vorticity is understood as how much a vector field (in this case a velocity field u) will tend

to make a particle rotate about a central point that is moving with the flow as well. It is illustrative

to imagine the case of planar velocity field, i.e.,

u(x, y) = (ux, uy, 0), ω = (0, 0, ωz).

In the case of a whirlpool-like flow, where all the particles rotate around a central point with the

same angular velocity Ω, it is easy to prove [50, 64] that the vorticity is ωz = 2Ω. If we now use

the identity

∇(u2/2) = (u ·∇)u+ u×∇× u.

into the Navier-Stokes equation 2.1, together with the definition of vorticity, we obtain:
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∂u

∂t
= u× ω −∇(p/ρ+ u2/2) + ν∇2u. (2.3)

Taking the curl of 2.3 and remembering that the curl of a gradient is zero, we obtain the vorticity

equation:

∂ω

∂t
= ∇× [u× ω] + ν∇2ω. (2.4)

This equation is fundamental in the context of magnetohydrodynamics (MHD). Perhaps

one of its more pedagogical interpretations comes to light when we again consider planar flows,

i.e., ω = ωz. In this case, the equation 2.4 takes the form

Dω

Dt
= ν∇2ω,

where the operator

Dω

Dt
=

∂ω

∂t
+ (ω · ∇)ω, (2.5)

is the so-called convective derivative of a vector field.

This equation is equivalent to an advection-diffusion heat equation for the temperature

in a fluid: if we replace ω by T and ν by α (the thermal diffusivity). The overall picture is

fascinating: the vorticity is created at boundary layer by pressure gradients only [67], then it is

diffused into the interior of the fluid in the exact same way that the temperature is diffused from

a heated surface. Vorticity cannot be created or destroyed within the bulk of the fluid. Due to its

conservation properties, it is merely spread into the fluid by diffusion [50].
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2.1.3 Helicity

Another important quantity for fluid dynamics and magnetohydrodynamics is helicity,

defined as

h =

∫
V

(u ·w)dV, (2.6)

where V stands for a volume composed of always the same particles, which is called material

volume.

We can additionally state that helicity is a conserved quantity. To see this, let us apply the

convective derivative 2.5 to the vector product u · ω:

D(u · ω)

Dt
=

Du

Dt
· ω +

Dω

Dt
· u.

Using the vorticity equation and the Navier-Stokes equation we notice that the crossed

diffusion terms cancel each other and we end up with

D(u · ω)

Dt
= ∇ · [(u2/2− p/ρ)ω],

where we have used the fact that ω is solenoidal, i.e., ∇ · ω = 0.

We now integrate for an infinitesimal volume δV , and since the fluid is incompressible, the

convective derivative commute with δV (D(δV/Dt=0) and we obtain:

d

dt

∫
V

(u · ω)dV =

∫
V

∇ · [(u2/2− p/ρ)ω]dV,
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d

dt

∫
V

(u · ω)dV =

∫
S

[(u2/2− p/ρ)ω]dS,

where we used the Stokes Theorem and, again, since ω is solenoidal, its integral on a closed

surface is zero. Therefore we obtain the conservation of helicity

d

dt

∫
V

(u · ω)dV = 0. (2.7)

2.1.4 Boundary Layers

In this section we will go over a brief description of the concept of boundary layers. This

subject is of extreme relevance in almost all branches of fluid dynamics. It was first presented by

Prandtl in 1904, but it took many more years for his ideas to finally detach to their full potential.

The concept of boundary layer starts imagining a fluid very close to a boundary. If we

consider the stationary Navier-Stokes equation

(u · ∇)u = −∇(p/ρ) + ν∇2u, (2.8)

subject to the inviscid boundary condition u ·dS = 0, where dS is an infinitesimal vector normal

to the boundary. We know that the velocity not only needs to be normal to the surface but it must

obey the non-slip boundary condition, meaning that it must be zero in the boundary. Therefore,

as we get closer to the surface, the only mechanical forces available to slow down the velocity are

the viscous forces, because the pressure cannot have a gradient in the transversal direction in the

limit near the surface, since the tangential velocity must be zero. This leave us with the viscous
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forces balancing the advection at the boundary layer as

(u · ∇)u ∼ ν∇2u. (2.9)

Then, the length scales of the Laplacian (δ) in equation 2.9, which are the length scales of the

boundary layer, need to be of the order

δ ∼
√
νL/u ∼ Re−1/2, (2.10)

where L is the length scale outside the boundary layer and Re is the well-known Reynolds number

(see section 2.4).

There is a phenomenon that takes place around the boundary layer known as separation.

When the fluid outside of the boundary layer decelerates, so does the fluid inside the boundary

layer, due to the pressure gradient formed across the layer. However, the fluid inside the boundary

has less kinetic energy than the fluid outside; hence, sometimes it can start reversing. When this

happens, a wake is created and then ejected in the form of eddies outside the boundary layer. This

separation of the flow from its surface can be achieved more effectively if the surface is irregular.

This is crucial for the present work as we will see in further sections.

2.1.5 Kolmogorov Scaling Law

“Big whirls have little whirls, that feed on their velocity;

and little whirls have lesser whirls, and so on to viscosity.”

— Lewis Fry Richardson.
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Figure 2.1: Schematic of the energy cascade to small scales in a viscous flow. Re, the Reynolds
number, represents the ratio of the forcing and the viscous forces.

The objective of this section is to give a brief description and quantification of one of the

most beautiful and also most experimentally demonstrated laws in fluid mechanics. The general

idea can be interpreted as follows: when a flow is perturbed by some force F , eddies are formed,

first at the scale of the perturbing force. Then, these eddies are transformed by strain (shear)

into smaller and smaller scales until the viscosity dissipates these eddies to thermal energy. This

notion can be observed schematically in Figure 2.1.

The Reynolds number is defined as

Re = UL/ν, (2.11)

and represent the ratio between the scales of the forcing and the scale of the dissipation due

viscosity, where ν is the kinematic viscosity and U and L are the characteristic velocity and

distance of the large-scales, i.e., the forcing scale, the scale at which the turbulence starts to

form, so the bigger eddies are generated. These bigger eddies are then transformed to smaller

eddies by means of the strain tensor and so on and so on, until the viscosity dissipates them. The
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range in which the energy is dissipated to smaller scales is called the inertial subrange.

It can be proved that if the Reynolds number is big enough, the energy dissipation in the

inertial subrange is independent of the large scale and of the viscous scales (where the viscosity

starts taking part in the dissipation). This is not a trivial result, but a very interesting one. For a

light explanation see Davidson [50], and for a more detailed interpretation the book of Tennekes

and Lumley [68] is highly recommended.

Let ϵ be the rate of mechanical energy dissipation due viscosity per unit mass. This rate

must be equal to the rate at which the energy is fed to the turbulence from the mean flow. If not,

the energy in the turbulence will diverge. Moreover, this has to happen across the entire range of

the cascade, otherwise eddies of a particular size would grow more than others. In other words,

the cascade to smaller scales has to be uniform: ϵ must be constant throughout the cascade.

With these two previous statements, we can construct a dimensional group of units for the

mechanical energy of the eddies of size r. Let us call this energy (∆v)2, for the inertial subrange.

Since it will not depend on either u or l (the large scales) nor on ν, the viscosity (the small scales),

then the remaining dimensional groups are ϵ and r and with these two numbers the only way we

can form units of energy is

(∆v)2 ∼ ϵ2/3r3/2. (2.12)

This equation is called the Kolmogorov and Obukhov’s two-thirds law. However, this

equation is often represented in units of the wave number k ∼ 1/r. Let us define E(k)dk as
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the energy contained in eddies whose size lies in the range k → k + dk. Then

(∆v)2 ∼
∫ ∞

k

E(k)dk,

and

E(k) ∼ ϵ2/3k−5/3. (2.13)

This is the famous Kolmogorov’s five-thirds law. It says that the energy in the eddies as a function

of their wavenumber follows a power law for the inertial subrange. This power spectrum has been

found in numerous experiments, including the present work as we will see in further sections.

2.1.6 Taylor’s Frozen Turbulence Hypothesis

To finish this section on theory fundamentals in hydrodynamics, we will talk about the

Taylor Hypothesis, which is more like an ”experimental fundamental”. It provides a basis for the

measurements of streamwise derivatives of flow variables. Taylor proposed that for short time

intervals, turbulence can be assumed to be frozen as it convects past a probe fixed at a point in

the space [69]. This statement can be expressed mathematically as

dux

dx
= − 1

Uc

dux

dt
.

Where Uc is the convection speed of the frozen turbulence and ux the velocity in the spatial

direction x as measured by the probe.

Practically, this means that the spatial spectrum (k) can be connected with the temporal
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spectrum (ω) given by the relation

kx ≈ ω/ux.

This relation will allow us to obtain the one-dimensional streamwise spectra from the temporal

frequency spectra.

2.2 Magnetohydrodynamics (MHD)

In this section we start introducing the effects of electromagnetic fields into the fluid

equations.

2.2.1 Maxwell’s Equations for MHD

Let us start by introducing the reduced form of the Maxwell’s equations for MHD:

∇×E = −∂B

∂t
, (2.14)

∇×B = µJ , (2.15)

∇ ·B = 0 , (2.16)

∇ · J = 0 . (2.17)

A few statements have been assumed for these equations. First, we have neglected the

displacement currents in the Ampere-Maxwell equation because the velocity scales are much

smaller than c, the speed of light. Additionally, for the purpose of MHD, the charge density plays

no significant role in comparison to the current density J , since |ρE0|/|J ×B0| ≪ U2/c2 ≪ 1,
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where U is the velocity scale and we have used E0 ∼ UB0. We have also included the modified

Ohm’s Law for a conducting fluid in the moving frame of the flow velocity field u,

J = σ(E + u×B). (2.18)

With this, the Lorentz force is:

F = J ×B, (2.19)

where we have neglected again the current density. With these equations in hand, we have all the

tools that we need to start developing dynamo theory.

2.2.2 Induction Equation

The fundamental equation for dynamo theory is the induction equation. Taking the curl of

the Ohm’s law 2.18 and dividing by σ we obtain:

∇× J

σ
= ∇×E +∇× (u×B) .

Now, using equations 2.15 and 2.14 we obtain:

∇×
(

1

µσ
∇×B

)
= −∂B

∂t
+∇× (u×B).

Where 1/µσ is the magnetic diffusivity η which we will assume is constant. Now, using the

vector identity ∇× (∇×B) = −∇2B, where we have used equation 2.16, we finally obtain

the induction equation

23



∂B

∂t
= ∇× (u×B) + η∇2B. (2.20)

There are two basic limits of the induction equation that can help us to understand its

implications. The first limit is the case where no velocity field exists; so, u = 0 and

∂B

∂t
= η∇2B.

This is just a diffusion equation for the magnetic field. If a conductor is immersed in an

uniform magnetic field, the field in the conductor eventually becomes uniform. Let us consider

a sinusoidal plus constant field in the Cartesian z direction applied into a conductor of the form

Bz = B0 + B1 sin(kz). Here k will be the wave number of the applied field. If we plug this into

the diffusion equation we obtain Bz = B0 sin(kz) exp(−νk2t) + B1. Hence, the mean life of a

magnetic field in a stationary conductor is of the order

τ = 1/k2η.

This is also called the dipole diffusion timescale. For liquid sodium as the conductor and a scale

of 1 meter, which is typical for dynamo experiments, the decay time is on the order of 3 seconds.

For the Earth, on the other hand, it is of the order of 20000 years! This is longer than a human

lifetime but much shorter than Earth’s lifetime. This, for instance, rules out the possibility that

the remnant of an extinct permanent dipole is the origin of Earth’s magnetic field.

The other limit of the induction equation takes place when a perfect conductor is assumed.
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This is σ → ∞ or η = 0. With this, the induction equation takes the form

∂B

∂t
= ∇× (u×B).

This is the so called frozen flux limit or Alfvén’s theorem, which can be better interpreted if

we consider the surface integral around a material surface S (composed of the same particles)

∫
S

∂B

∂t
· dS −

∫
S

∇× (u×B) · dS = 0,

and by the Stoke’s theorem this is the same as:

∫
S

∂B

∂t
· dS +

∮
C

u×B · dl = 0,

where C is the closed contour of the material surface S. We can think of the relation between

the surface and the line differentials on the previous integral as linked by the fluid velocity only

if we are talking of a material surface, i.e., moving with the particles of the fluid. This is now

dS = (u× dl)δt.

Therefore, we get back to a surface integral of the magnetic field, by using the cyclic properties

of the scalar triple product to rearrange the terms on the line integral, and then simply added to

the first integral on the equation. Hence,

d

dt

∫
S

B · dS = 0.
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This equation is the frozen flux limit for a material surface S, because it says that the

magnetic flux through a material surface does not change in time, i.e., the magnetic field lines

are frozen with the fluid velocity lines. This is no longer true if diffusion is included, because

diffusion allows the field lines to slip through the fluid, quoting C.A. Jones in [70]. Even though

we have omitted most of the mathematical rigor, this is an attempt to sketch an idea of the proof

that it is explained in more detail by Davidson [50] for instance.

We would like to conclude this section by restating the induction equation but now using

the dimensionless units. By deciding on a typical length scale L (that could be the size of the

experiment, or the planet) and a typical velocity U (that could be the angular velocity of the

boundaries of the experiment) we can write down the induction equation in its dimensionless

form as

∂B

∂t
= ∇× (u×B) +

1

Rm
∇2B. (2.21)

Where the derivatives are taken with respect to the new dimensionless coordinates and where Rm

is the magnetic Reynolds number defined as

Rm =
UL

ν
. (2.22)

It basically measures the ratio of inertial forces to magnetic diffusivity. In other words, it tells us

whether we are close to the diffusion limit or to the frozen flux limit. See the section 2.4 for a

detailed explanation in the context of this dissertation’s experimental work and the Figure 2.2 for

a schematic representation of the physical interpretation of the Reynolds numbers.
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Figure 2.2: Schematic of the energy cascade to small scales in a viscous conductive flow. Re,
the Reynolds number, represents the ratio of the forcing and the viscous forces and Rm, the
magnetic Reynolds number, represents the ratio of the forcing and the magnetic diffusivity. The
magnetic field lines in blue are dragged by the velocity field until the magnetic diffusivity, due to
the non-infinite conductivity, dissipates them into currents.

2.3 Dynamo Theory

In the next section let us use the formalism and equations learned in the previous sections

to address the dynamo problem. In plain words, we are looking for a velocity field that is capable

of enhancing the magnetic field in a certain way that creates a self-sustained magnetic field. The

dynamo problem is a two way street: one side where the velocity field stretches and amplifies the

magnetic field lines, and the other side, where the magnetic field lines are capable of modifying

the velocity field lines. In the next section, and for the majority of this dissertation, we will drive

on one side of the road: a steady (or turbulent) velocity field capable of amplifying the magnetic

field lines. This is called the kinematic dynamo problem.
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2.3.1 Kinematic Dynamo Problem

Let u(x, t) be a velocity field defined on a bounded volume V with surface S of a conductive

fluid which has an uniform constant magnetic diffusivity η and density ρ. With this, we can define

the total kinetic energy as

E(t) =
1

2

∫
V

ρu2dV < E0.

Here, we also assume that the mechanical energy is bounded.

Concerning the magnetic field B(x, t), we shall assume, as we did in previous sections,

that this magnetic field is generated entirely by the current distribution J . The magnetic field will

evolve then inside V with the induction equation 2.21, outside V with the Maxwell equations 2.15

and 2.16, and will be continuous across the boundary S, assuming (as it is normally assumed in

fluids or solids of constant conductivity) that there are no surface currents: JS = 0. Additionally,

the magnetic field is assumed to converge to 0 at infinity like a dipole field: B = O(r−3) as

r → ∞, and it is subject to the initial condition

B(x, 0) = B0(x)

.

With this, we can define the magnetic energy as

M(t) =
1

2µ0

∫
V∞

B2dV. (2.23)

where V∞ is understood as the whole space.
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With these previous statements, a natural definition of the dynamo problem is as follows:

Given V and η, a velocity field u(x, t) acts as a dynamo if M(t) ̸→ 0 as t → ∞ [51].

In other words, u(x, t) successfully counteracts the erosive action of the ohmic dissipation.

The magnetic energy M could tend to a constant nonzero value, or could oscillate either periodically

or chaotically. It may also increase without limit which implies that the Lorentz forces need to

be taken into account and we are no longer in the kinematic dynamo regime [51]. The velocity

field u(x, t) may also act as a dynamo for some, but not all, initial conditions B0, or magnetic

diffusivities η.

The simpler kinematic dynamo problem is linear in B and with a constant flow u(x).

Then, we look for solutions of the form

B(x, t) = B0(x, y, z)e
pt. (2.24)

Here, we seek for eigenmodes B0, each one with a set of complex eigenvalues

p = λ+ iω,

where λ is the growth rate and ω the frequency of the dynamo wave.

Even with this simplification, the kinematic dynamo is a difficult problem. There are a few

working kinematic dynamo models that have been proved successfully. Among them we have

the Faraday Disk Dynamo Models that consists of rotating disks in the presence of a magnetic

field, capable of generating currents capable of sustaining a magnetic field. See figure 2.3. There

are a few working disk dynamos like this, check for instance [70].
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Figure 2.3: Drawing of Faraday disk, the first electromagnetic generator, invented by British
scientist Michael Faraday in 1831. The copper disk (D) rotated between the poles of a horseshoe
shaped magnet (A), creating a potential difference between the axis and rim due to Faraday’s law
of induction. If an electrical circuit such as a galvanometer was connected between the binding
posts (B) and (B’) the motion induced a radial flow of current in the disk, from the axle toward
the edge. The current flows into the spring contact (m) sliding along the edge of the disk, out of
binding post (B’) through the external circuit to binding post (B) , and back into the disk through
the axle. From Alglave and Boulard [6]

Figure 2.4: Sketches of the Ponomarenko Dynamo model (a) and the Riga dynamo experiment
(b). From Gilbert [7].
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We also have flow dynamos in restricted geometries like the Ponomarenko dynamo illustrated

in Figure 2.4 (a): a simple helical flow in a cylindrical container. For all these models an analysis

can be made in terms of the minimum magnetic Reynolds number capable of sustaining dynamo

action by assuming a solution of the form 2.24 in the respective system of reference (cylindrical,

spherical, etc) into the induction equation. See for instance [7, 71, 72]. A detailed analysis

escapes the scope of this dissertation but a good summary, for which the majority of this section

was inspired, can be found in Course 2 of Cardin et al. [70]. Check also Childress and Gilbert

[52] for a detailed study of the dynamo action in the context of chaos theory.

For the rest of the dissertation we will focus on kinematic dynamo models in the context of

spherical geometries. In order to do so, we will introduce new mathematical formulations in the

next section.

2.3.2 Spherical Dynamos

When there is no current in a region of space, the magnetic field satisfies ∇ × B = 0,

which implies the existence of a scalar potential V such that B = ∇V and

∇2V = 0.

This is Laplace’s Equation. When V → 0 at infinity, the solution of this equation can be

expressed in the form:

V =
a

µ

∞∑
ℓ=1

ℓ∑
m=0

(a
r

)ℓ+1

Pm
ℓ (cos θ)(gmℓ cos(mϕ) + hm

ℓ sin(mϕ)), (2.25)
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where we have spherical coordinates. Here, Pm
ℓ are the Schmidt normalized Legendre

functions, a is the radius of the Earth, and gmℓ and hm
ℓ are the Gauss coefficients.

From here we can obtain the magnetic field by means of B = ∇V . For this dissertation

in particular it will be convenient to express the magnetic field projected onto the sphere surface

where the currents are contained in the space. This could be the Earth’s Core-Mantle boundary

or the vessel of the experiment. In this case the radial component of the magnetic field in the

surface takes the form:

r̂ ·B(r, θ, ϕ) =
∞∑
ℓ=1

ℓ∑
m=0

ℓ(ℓ+ 1)
(a
r

)ℓ+2

Pm
ℓ (cos θ)(gmℓ cos(mϕ) + hm

ℓ sin(mϕ)). (2.26)

With this, the quantity

Bm
ℓ = ℓ(ℓ+ 1)

(a
r

)ℓ+2

gmℓ , (2.27)

(or hm
ℓ ) will be the peak field strength of the radial magnetic field at the spherical boundary

associated with the mode (l,m). For instance the mode (1, 0) corresponds to an axial dipole field,

the mode (2, 0) with a quadrupole field, the mode (1, 1) to a rotating equatorial dipole field, and

so on.

Together with the spherical harmonics decomposition, we can decompose the magnetic

field in spherical geometry into poloidal and toroidal components. By means of ∇·B = 0, only

two independent scalar fields are needed to specify the magnetic field B:

B = BT +BP ,
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where

BT = ∇× (rT (r, t)), (2.28)

BP = ∇×∇(rP (r, t)). (2.29)

Each one of the scalar fields T and P can be decomposed in surface spherical harmonics

by means of 2.26.

Another common field decomposition is in the symmetric and axisymmetric parts. This

is standard for rotational experiments in which the dynamics are considerably symmetric, given

the existence of a preferable direction of movement. The formalism is used theoretically by

Braginskii (see for instance Chapter 8 of Moffatt [51]) to study weak departures from axial

symmetry in dynamo systems.

To continue with our study of dynamos in spherical geometry, let us now introduce the

work and formalism of Bullard and Gellman (1954) [49]. They decomposed the magnetic and

velocity field in toroidal and poloidal spherical harmonics:

B =
∑
l,m

Tm
ℓ + Sm

ℓ ,

u =
∑
l,m

tmℓ + smℓ .

Where

tmℓ = ∇× r̂tmℓ (r, t)Y
m
ℓ (θ, ϕ), smℓ = ∇×∇× r̂smℓ (r, t)Y

m
ℓ (θ, ϕ), (2.30)
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where Y m
ℓ (θ, ϕ) are the scalar spherical harmonics. The previous equations can be similarly

written for Sm
ℓ and Tm

ℓ .

Bullard and Gellman (1954) used this notation to study kinematic dynamos in a spherical

geometry. A proposed velocity fields u, in terms of tmℓ and smℓ , could modify an existent magnetic

fields, expressed in toroidal and poloidal parts as well, to generate a self sustained dynamo.

The angular part of the field is contained in the (l,m) pair, and the radial part is expressed as

polynomials on r. For instance, they proposed a velocity field of the form:

u = ϵt01 + s22,

with a stationary radial dependence on the toroidal and poloidal components: t01(r) = r2(1 − r)

and s22(r) = r3(1 − r)2. In their calculations this field was capable of generating a dynamo,

however, posterior numerical runs showed that they were actually not dynamos.

One of the main results of Bullard and Gellman [49] was a list of selection rules that showed

which interaction between magnetic fields and velocity fields were allowed by expressing the

induction equation in toroidal and poloidal spherical harmonics components. They expressed the

allowed interactions in triads. For instance

(Sα, Tβ, Tγ)

can be read as: a poloidal magnetic field of order α (l = α) and wave number mα, is advected by

a toroidal velocity field Tβ , to create a toroidal magnetic field Tγ . This interaction is only possible

if the triad α, β and γ satisfy a series of selection rules. We will not list them all, but they can be
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Figure 2.5: Sketches of the flows proposed by Dudley and James to generate dynamos and shown
respectively in equation 2.31. On the right, the meridional sections, on the left the azimuthal flow
direction. From Dudley M. L. et al. [8]

found in Bullard and Gellman [49], section 6. One of them is, for instance, that α + β + γ must

be even and must form the sides of a triangle.

Following the Bullard and Gellman formalism, Dudley and James [8] proposed a series of

new velocity fields that could lead to dynamo action. These flows are of the form

u = ϵs02 + t02, u = ϵs02 + t01, u = ϵs01 + t01. (2.31)

with t01(r) = s01 = r sin πr and t02(r) = s02 = r2 sinπr. These fields are illustrated in Figure

2.5. They generated dynamo for selected values of ϵ, each one of them with its respective critical

magnetic Reynolds number of order Rm ∼ 100. In all three cases the meridional and poloidal

flows are of similar intensity and the main generated field is an oscillatory equatorial dipole that

rotates in time, so (l = 1,m = 1) [70].

There are more of these flows proposed to generate a dynamo, one of particular interest is

the Kumar-Roberts flow, which is similar to the ones in Figure 2.5 but more complex, with one

term intended to mimic thermal convection rolls in the core:

35



u = ϵ0t
0
1 + ϵ1s

2c
2 + ϵ2s

2c
2 + ϵ3s

2s
2 , (2.32)

where the 2s (2c) stands for the sine (cosine) Gauss coefficient of equation 2.26 [70].

Gubbins et al. [9] studied in more detail these flows for a diverse range of ϵ and radial

dependences. They defined the relative energy as divided in the differential rotation energy D

governed by ϵ0, the meridional circulation energy M governed by ϵ1, and the convection energy

C governed by ϵ3 and ϵ4. Therefore,

D +M + C = 1

.

They found a relation between the helicity of the flows and the critical Reynolds number

for dynamo action. Additionally, they found some regions, in terms of proportion between M

and D, in which dynamos were not possible. They summarize it in the so-called Love diamonds

(Love is one of the authors of [9]) shown in Figure 2.6. There you can see that the widest area

with the lower critical magnetic Reynolds number in the upper diamond coincides with an area

of high helicity in the lower diamond.

2.3.3 Mean field dynamo theory

In this section we will introduce a conventional approach taken also in fluid dynamics to

study turbulence models, the mean field approximation. This will allow us to understand the role

of the fluctuations in the behavior of the mean flows, and thus, the importance of the turbulence in
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Figure 2.6: The Love diamonds. The upper diamonds indicated the regions of the map (D,M)
where dynamos occur and at which critical magnetic Reynolds number. Lower dynamo is the
helicity of the flows. From Gubbins et al. [9]

37



the dynamo mechanism. In particular this section will help us to understand the relation between

the helicity and the dynamo action, and hence, allows us to connect the water experiments with

the sodium experiments which is the main storyline of the present dissertation. The discussion in

this chapter is guided mostly from the notes of C. A. Jones in the book by Cardin et al. [70].

We start with a very simple approach: we split the magnetic and velocity field into mean

and fluctuating parts:

B = B +B′, u = u+ u′. (2.33)

With the so called, Reynolds averaging rules:

B1 +B2 = B1 +B2; B = B; B′ = 0, (2.34)

u1 + u2 = u1 + u2; u = u; u′ = 0. (2.35)

We will also assume that averaging commutes with differentiation.

∂B

∂t
=

∂B

∂t
∇B = ∇B. (2.36)

With all this, we now average the induction equation 2.21 resulting in

∂B

∂t
= ∇× (u×B) + η∇2B. (2.37)

Now, we use the Reynolds Averaging rules on the first term on the right side of 2.37 and

we obtain:
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∂B

∂t
= ∇× (u×B) +∇× E + η∇2B, (2.38)

where E = u′ ×B′. The term E is called the e.m.f. (electromotive force).

The direct consequence is fairly simple but powerful in concept: there is a new fluctuating

term in the mean induction equation. In other words, the turbulent magnetic and velocity fields

are interacting in such a way that, if they satisfy the averaging rules, they modify the mean

magnetic fields.

We can subtract equation 2.38 from the induction equation 2.21 to obtain the induction

equation of the turbulent magnetic field B′:

∂B
′

∂t
= ∇× (u×B′) +∇× (u′ ×B) +∇× G + η∇2B′, (2.39)

where G = u′ ×B′ − u′ ×B′.

If we assume that at a starting time there is only and external applied field B0 = B, The

equation 2.39 guarantees that the field B′ and B are linearly related [51]. This allows us to

express the term E as a convergent series in the form:

Ei = αijB0j + βijk
∂B0j

∂xk

+ . . . (2.40)

Here, αij and βijk are pseudo tensors and we have only expanded up to the first order terms.

If we assume that the turbulence is isotropic and homogeneous, the statistical properties of

u are invariant under rotation and translation, ergo, αij and βijk must be isotropic tensors as well:
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αij = α(x)δij, βijk = −β(x)ϵijk. (2.41)

Plugging this back into 2.38 we obtain the main equation of the mean field dynamo theory,

∂B

∂t
= ∇× (u×B) +∇× αB −∇× (β∇×B) + η∇2B. (2.42)

In particular, if α and β are constant, the term ∇ × (β∇ × B) = −β∇2B, so it acts as an

enhanced diffusivity. This is known as the beta effect. From now on, we will focus on the α term,

known in the literature as the alpha effect. This term is directly connected with the helicity of the

velocity fields as we will see next.

The implications of the alpha effect can be better understood if we use the Ohm’s law 2.18.

If αij = αδij , then to order zero

E = αB,

and by Ohm’s law we have

J = σE = σαB. (2.43)

This equation might not seem relevant at first, but it implies that the electrical current

generated by the turbulent fluctuations is parallel to the magnetic field lines. This, in contrast,

with Ampere’s law 2.15. As mentioned by Moffatt [51], this is the heart of the dynamo theory. It

provides an obvious means whereby the dynamo cycle might be completed, i.e., the toroidal field

can be transformed back to poloidal field. With this new term in equation 2.42 the Cowling’s

Theorem no longer applies and we can have dynamos with simple axisymmetric fields.
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If we express the magnetic field into poloidal (Bp) and azimuthal component (Bθ), equation

2.42 (neglecting the β-effect) for the poloidal fields becomes:

∂Bp

∂t
= ∇× (up ×Bp) +∇× αBθ + η∇2Bp.

And so, the α-effect is the only way to generate poloidal fields from entirely azimuthal

fields.

To better understand the implications of the alpha effect, let us consider just the fluctuating

induction equation, and let us make a change of reference frame to one moving with the mean

velocity field, so u = 0. Additionally, for the sake of the calculation, we assume that the magnetic

Reynolds number associated with the fluctuating scale ( Rm = u′l/η) is small, so equation 2.39

becomes

∂B
′

∂t
= (B ·∇)u′ + η∇2B′. (2.44)

If we know assume a fluctuating magnetic field as a superposition of random waves of the

form u′ = Re[u exp i(k · x− ωt)], and we plug it into the equation 2.44, we obtain

B′ = Re

[
i(k ·B)u

ηk2 − iω
exp i(k · x− ωt)

]
. (2.45)

Now we evaluate E = u′ ×B′ and we obtain

u′ ×B′ =
1

2

iηk2(k ·B)

η2k4 + ω2
(u∗ × u).

Here the ∗ stands for the complex conjugate. On the other hand, we can calculate also the helicity
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of the turbulent fields H as

H = u′ ·∇× u′ = −1

2
ik · (u∗ × u).

Therefore, comparing this calculation of H with the one for u′ ×B′, we can see that if E =

u′ ×B′ = αB, then in fact α is going to be proportional to the helicity H .

A more detailed calculation can be found in Moffatt [51], but also an analysis based on

dimensionless groups can be made as suggested by Davidson [50]. We might expect α to depend

only on |u′| (the velocity of the eddies), η and ℓ (the size of the eddies). At high magnetic

Reynolds numbers we can expect α to be independent of η, and so the only dimensional group

that we can create suggests that α ∼ u′. But α is a pseudo-scalar, and so is helicity. So,

alternatively, we can construct the same dimensional group by

α ∼ [u′ ·∇× u′]ℓ/|u′|.

This kind of arguments implies, but does not prove, that helicity is a key component of the

α-effect for high Rm. A similar argument can be made for a low magnetic Reynolds number,

where the helicity also acts as the pseudo-scalar that we need to include to match the dimensional

group. See for instance Davidson [50] for an introductory discussion, and Moffatt [51] for a more

rigorous approach.

42



2.3.4 Dynamo Models: The α2 and αω dynamo

The existence of α-effect allows us to have axisymmetric dynamos. With asymmetric fields

of the form

u = sω(s, z)ϕ̂+ uθ; B = sB(s, z)ϕ̂+Bθ, (2.46)

where s stands for the cylindrical radius and with Bθ = ∇× A(s, z)ϕ̂. With this, the induction

equations become

∂B/∂t+ s(uθ ·∇)(B/s) = s(Bθ ·∇)ω +∇× (αBθ) + (β + η)(∇2 − s−2)B, (2.47)

∂A/∂t+ s−1(uθ ·∇)(sA) = αB + (β + η)(∇2 − s−2)A. (2.48)

There are two main source terms involving the poloidal magnetic field Bθ on the right of

equation 2.47. The ratio of these two source terms is of the order

s(Bθ ·∇)ω

∇× (αBθ)
= O

(
L2|∇ω0|

α0

)
. (2.49)

Where L is a characteristic length and the sub-index 0 indicates a typical value for α and the

gradient of vorticity.

We have then two situations. The first one is when L2|∇ω0| ≪ α0. In this case the

differential rotation term in equation 2.47 is negligible, and we have a dominating α-effect acting

as both sources of poloidal and toroidal field. This model is called the α2 dynamo. The second
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situation is when L2|∇ω0| ≫ α0 where the differential rotation term dominates. Now, the

toroidal field is generated by differential rotation and the poloidal field is generated by the α-

effect. Dynamos generated this way are called αω-dynamos.

2.3.5 Kolmogorov Scaling Law for Magnetic Fields

There is an analog to the five-thirds Kolmogorov scaling law of section 2.1.5 but for

magnetic field lines. As discussed briefly in that section, the viscous range is the scale at which

the viscosity starts being relevant for the dynamics. This viscous scale is characterized by a

viscous cut-off wave number kη, i.e., the size of the eddies that starts being dissipated by viscosity.

The same happens for the magnetic field lines: there is a scale at which the magnetic diffusion

starts dominating the dynamics of the magnetic field, and it starts to diffuse into electrical currents

in the flow. This range is characterized by the conduction cut-off kσ.

Following the discussion by Moffatt [73], Nornberg et al. [74] and the discussion in the

previous section, if we take B = B + B′ into the induction equation, assume a fluctuating

magnetic field as a superposition of random waves of the form u′ = Re[u exp i(k · x− ωt)],

and plug it into the equation 2.44 we obtain equation 2.21. We now assume Taylor’s hypothesis

(see section 2.1.6), i.e., the magnetic fluctuations are primarily due to advection of eddies by the

mean flow [74] and so the dispersion relation is approximately ω ∼ ku0 (where u0 is associated

with the estimation of the magnetic Reynolds number ). We know divide equation 2.45 by the

dispersion relation and obtain that

(
iω

ku0

+
kη

u0

B′
)

∼ i
u

u0

B.
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If we now consider the case where k ≪ kσ, then by definition this conduction cut-off

is related with the magnetic Reynolds number in the form kσ ≡ u0/η = Rm/a where a is a

characteristic length associated with u0. This will let us approximate

B′2/B
2 ∼ u2/u2

0,

and from equation 2.13 we have that E(k) = u2/k ∼ k−5/3, and so the magnetic energy spectrum

is

EM(k) = B′2/k2 ∼ k−5/3.

If, on the other hand, kσ ≪ k we obtain the scaling

B′2/B
2 ∼ u2/(ηk)2,

and then

EM(k) ∼ k−2E(k) ∼ k−11/3.

This is the Kolmogorov scaling law for magnetic fields under turbulent diffusion, assuming

Taylor’s hypothesis. It has been found experimentally in many situations, including in the Madison

experiment [74]. However, it was not found in the VKS experiment [75] where it was attributed

to a spatial filtering due to the dimension of the tube containing the probe.
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2.4 Dimensionless Parameters

In this last section of the theory framework, we summarize the main dimensionless numbers

used and defined in the present dissertation for the particular control parameters of our experiments,

i.e., spherical Couette flows.

We define the fluid and magnetic Reynolds numbers as:

Re =
|Ωi − Ωo|(ri − ro)

2

ν
, Rm =

|Ωi − Ωo|(ri − ro)
2

η
(2.50)

where Ωi is the angular frequency of the inner sphere, Ωo is the angular frequency of the outer

sphere, and ri and ro are the inner and outer radii respectively. The value for ri does not include

the baffles height. The kinematic viscosity ν is taken as 1.1 × 10−6 m2/s for water [76] and

0.71 × 10−6 m2/s for liquid sodium [77]. The magnetic diffusivity η is 0.079m2/s for sodium

[77].

The dimensionless parameter used to characterize the differential rotation is the Rossby

number:

Ro =
(Ωi − Ωo)

Ωo

. (2.51)

This also indicates the ratio of inertial to Coriolis forces.

We also define the Ekman number as:

E =
ν

Ωo(ri − ro)2
. (2.52)

This indicates the ratio of viscous to Coriolis forces. For the 3-m experiment we achieve E ≈
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10−9, a relatively small number for a laboratory experiment, though still larger than that for the

Earth’s E ≈ 10−15 [12].
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Chapter 3: The 40-cm experiment: Hydrodynamics Studies

In this chapter we will discuss the results on the 40-cm water experiment. This experiment

serves as a model of the 3-m spherical Couette Flows experiment with the same sphere’s radius

ratio of Γ = 0.35. As mentioned before, the idea was to perform velocimetry measurement to

test scaled models of different baffles configurations to test the dynamics and topology of the

flows generated, and, if possible, give an estimate of the helicity improvement that the flows

could develop under different baffles design. We will describe first, the experimental setup and

the parameter space; then, we will continue with the main results, starting from torque scaling,

equatorial velocimetry and meridional velocimetry. The latter performed in the only region we

could anticipate by the equatorial velocimetry results as we will see. The next section follows

mostly our publication Rojas et al. [78] in Physical Review Fluids but we have adapted it to

follow this dissertation outline.

3.1 Experimental Set-up

The experiment shown in Figure 3.1 consists of two independently rotating spheres with

Γ = ri/ro = 0.35. The 40-cm diameter outer sphere is made of two 5-mm thick acrylic shells

bolted together at the equator using a rubber gasket seal, and is rotated by a motor using a gear

belt. The 14-cm diameter inner sphere is connected directly to a motor using a shaft that sits on
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Figure 3.1: Schematic of the 40-cm experiment. (a) 12 cm diameter inner sphere with straight
baffles. The baffle height adds 5% or 10% to the inner sphere radius. (b) 40 cm diameter acrylic
outer sphere filled with water. (c) 1 cm diameter inner shaft. (d) 3 kW inner motor. (e) 2.23
kW outer motor. (f) Gear belt. (g) Cylindrical lens for laser sheet. (h) 6 W NdYVO4 continuous
laser. (i) High-speed camera positioned for measurements in the equatorial plane. (k) Polystyrene
particles dispersed in the water.
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Figure 3.2: Four types of inner spheres were tested in the 40-cm experiment. (a) Smooth, (b)
Straight, (c) Chevron and (d) Alpha. The two rotation directions for (c) and (d) are called wedge
mode and scoop mode.

a bearing in the bottom of the outer sphere. This motor was taken from a broken treadmill and

adapted for the experiment. It was connected to an external power supply. Once the experiment

is assembled, the outer sphere is filled with water at about 20◦C. Very extended running times

are avoided to reduce changes in temperature: only ±2◦C were detected, which implies around

0.5% change in kinematic viscosity of the water. This is negligible compared to the experiment

systematic uncertainty associated with the friction in the motor (see section 3.2.1).

The inner spheres with baffles were 3D-printed from Polylactic Acid (PLA) with baffles

whose height was 5% and 10% of the inner sphere radius. Three baffle designs are tested in

both heights: straight baffles from pole to pole (Figure 3.2), chevron shaped baffles with a curve

given by θ = φ in spherical coordinates on the surface of the sphere (Figure 3.2) and a hybrid of

straight and chevron baffles as shown in Figure 3.2, which will be called alpha baffles for the rest

of this work. The motivation for this design is to test an asymmetric baffle model more amenable

to fabrication than the chevron shaped baffles. With these chevron and alpha designs we aim to

break one symmetry of the experiment (φ → −φ). For smooth and straight design, reversing the

rotation direction of both spheres gives the same flow states, whereas reversing both for chevron

and alpha designs should yield distinct states. We call these two different modes of operation

for each of the asymmetric designs wedge and scoop. This causes an effective doubling of the
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parameter space as we will discuss in section 2.4.

For the smooth inner sphere, the maximum rotation rate was 50 Hz for the inner sphere

and 5 Hz for the outer sphere. We record the current and voltage in the inner motor, calculate the

power with these two values and use the rotation rate to derive the power and torque: Pi = Ωi ·τi,

where Pi is the power, Ωi is the inner sphere angular velocity and τi is the torque from the inner

motor. Optical sensors are used to measure the frequency for both motors. The main source of

torque error is the friction from the bearings and in the motors. Runs at very low rotation rate are

performed to estimate the friction error in the experiment. A run with air instead of water was

also performed to examine the error in the torque at high rotation rates.

For the velocimetry measurements a 6 W laser, stationary in the laboratory frame of reference,

passes through a cylindrical lens to create a laser sheet. When measurements of the equatorial

plane are performed the laser sheet hits the sphere in a parallel plane to the equator a few

millimeters above it to avoid being occluded by the flange and gasket seal. Polyethylene fluorescent

particles of 75-106 µm diameter are added to the water to allow particle image velocimetry (PIV)

techniques [79]. High speed videos at 1000 frames per second (fps) are used to record the particle

motions in 1-s intervals. Several videos of the same parameters are performed and averaged.

To compensate for the spherical aberration due to the change in the refraction index between

water and air, a calibration measurement is done as follows: (i) with the camera in the same

position as it was for the measurements, a metallic square mesh of known spacing is placed in

the equatorial and meridional planes respectively. (ii) The sphere is filled with water and pictures

of both planes are taken. (iii) A non-linear calibration curve is fitted to the data, which allows

us to transform from pixel position in the videos, to radial and angular position in spherical

coordinates. In spite of this calibration, spherical aberration makes measurements unavailable
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near the outer sphere boundary as well as near the shaft and inner sphere boundary due to laser

reflections which locally saturate the camera. More details about the velocity measurements will

be discussed in section 3.2.2.

The control system for the experiment is shown in Figure 3.3. Everything is controlled by

a Data Acquisition System (DAQ) which is programmed to talk to the driver of the outer motor

and with the power supply that powers the inner motor. It also collects the data from the system

in form of voltages across key segments of the system. A resistive load is situated between

the power supply and the inner motor; the voltage drop across this known resistor was used to

compute the current in the inner motor. This voltage corresponded to the inputs AI3 and AI1

on the DAQ. Additionally, the voltage in the motor was acquired by measuring the voltage drop

across the inputs AI2 and AI1. With this two values, we were able to measure the power in the

inner motor.

A set of two optical gates were used to compute the rotation rates in the inner and the outer

motors. At the first stages of the experiment an oscilloscope was used to manually measure the

frequency in both motor, but later this was upgraded to be detected directly by the program that

runs the motors. This stage was crucial for improving the control feedback with the experiment:

given the lack of a driver for the inner motor, the voltage input had to be constantly adjusted to

overcome the torque demands of the system and keep the rotation rate at the requested value.

This demanded a constant read of the rotation rates of the systems and a set of calibrations curves

to better estimate the initial voltage demands.

In Figure 3.4 we see a representation of the differences in the parameter space due to an

asymmetric baffle design like the chevron or alpha baffles (see Figure 3.2). Changing the rotation

direction of the inner sphere Ωi, changes the leading edge shape of the baffles that engages with
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Figure 3.3: Schematics of the 40-cm experiment control system. A Data Acquisition System
(DAQ) communicates with a DC external power supply and with the outer motor driver. The
power supply then control directly the inner motor by a series of logic inputs by the DAQ. The
outer motor is controlled by its own driver who is controlled by the DAQ. A resistive load is
located between the inner motor and the power supply to measure the current in the system.
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Figure 3.4: Schematic of the doubling of the parameter space (Ωo,Ωi) by breaking the symmetry
of the inner sphere with respect to the rotation direction. The Finke and Tilgner [10] parameter
space corresponds to the vertical axis. In (a) an inversion with respect to the origin results in
the same states, making this plane to be symmetric to inversion through the origin. In (b), an
inversion results in different, yet unknown, states. State labels for (a) come from prior studies in
the 3-m system [4]. State labels in (b) are for illustrative purposes only.

the fluid. We called these two different directions wedge mode and scoop mode, as indicated

in Figure 3.4. These two modes are expected to change the hydrodynamics of the resulting

flows, hence giving rise to different states, in a similar way that changes in the angle of attack

in aerodynamics result in different lift and drag forces for planes [80]. Doubling the parameter

space and creating different types of spherical Couette flows may result in increasing our ability

to find a dynamo in the 3-m experiment. An initial understanding of the effects of these two

modes and its comparison with symmetric baffle designs is then a crucial goal of the present

work.

In Fig. 3.5 we compare the parameter space for the 40-cm, 3-m experiment and a numerical

simulation by Wicht [11]. The simulation by Finke and Tilgner [10] is performed with a stationary

outer sphere so Ro = ∞ or E−1 = 0, and does not appear in this figure.
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Figure 3.5: Inverse Ekman and Reynolds number parameter space for experiments (40-cm, 3-m),
simulations (Wicht [11]) and the Earth [12]. A solid line for Ro = 1 is shown for reference. The
dotted line indicates the equatorial jet instability regime as observed by Wicht. The dashed line
indicates the maximum torque line for a smooth inner sphere observed in the present work and in
Zimmerman et al. [4]
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3.2 Results

The basic driving mechanisms in the experiment are the rotation rates of the inner and

outer spheres. Equivalently, we can use Reynolds and Rossby numbers as independent control

parameters: the former it is a measures of how turbulent in the flow, induced by the differential

rotation, and the latter measures the importance of the overall rotation. These parameters have

been previously used to map the dynamics of Taylor and spherical Couette flows [1, 4].

We separate the results in two sections: first, we show torque as a function of Reynolds and

Rossby numbers. Then, we show particle image velocimetry (PIV) results performed in both the

equatorial and meridional planes to examine flow differences for each baffle design.

3.2.1 Torque Measurements

We define the dimensionless torque as:

G =
τ

ρν2ri
, (3.1)

where τ is the dimensional torque, ρ the fluid density, ν the kinematic viscosity and ri the inner

sphere radius. Similarly, we define G∞ as the dimensionless torque when Ro = ∞; i.e., when

the outer sphere is stationary. This parameter will be important later when we use it to normalize

the dimensionless torque as a function of differential rotation.
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Figure 3.6: Dimensionless torque from the inner motor versus Reynolds number with stationary
outer sphere (Ro = ∞) for all baffle designs. A power law of the form G∞ = bRea + c was
fitted to each data set. Values a, b and c are listed in Table 3.1. Dotted, dashed and solid curves
indicate no baffle, 10% and 5% baffle height designs respectively. Smooth design error bars are
shown for reference and apply for all curves.
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3.2.1.1 Reynolds number dependence

The Reynolds number dependence of the dimensionless torque with a stationary outer

sphere (G∞(Re)) is shown in Figure 3.6 for all three baffle designs (as well as no baffles: smooth)

and two baffle heights in the 40-cm experiment. We distinguished between scoop and wedge

modes in both the chevron and alpha designs. As expected, the 10% baffles present a higher

torque than the 5% ones. Additionally, we see that wedge mode (see Figure 3.4b) generates more

torque than scoop for both baffle heights and both asymmetric designs (chevron and alpha). The

reason for this will become clearer when we examine the velocimetry data in section 3.2.2.2.

We have fitted a power law of the form G∞ = bRea+c to the dimensionless torque over the

entire range of Reynolds numbers measured. The resulting coefficients are shown in Table 3.1.

We interpret the constant c as a torque due to friction in the shaft’s contacts, the motors and the

bearings. As it was done for previous works in 3-m [4], this value c was used as total length of

the error bars for each plot since at higher rotation rates it does not change significantly and it is

still the biggest source of uncertainty.

Table 3.1: Power law fit of the form G∞ = bRea + c of the plots in Figs. 3.6 and 3.7 and Taylor-
Couette flows in [1].

Experiment a b c
3-m (Γ = 0.35)[4] 1.89 0.003 3.3× 1010

Smooth 1.58 0.044 2.6× 109

Straight 10% 1.77 0.18 2.8× 109

Chevron scoop 10% 1.80 0.11 3.1× 109

Chevron wedge 10% 1.95 0.0093 3.3× 109

Straight 5% 1.74 0.16 2.4× 109

Chevron scoop 5% 1.81 0.047 2.6× 109

Chevron wedge 5% 1.89 0.012 2.7× 109

Alpha scoop 5% 2.11 0.00068 2.7× 109

Alpha wedge 5% 2.17 0.00035 3.2× 109

Taylor-Couette (Γ = 0.72) [1] 1.85 0.03 1.0× 108
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Figure 3.7: Same for Figure 3.6 but we extrapolate the power laws of the 40-cm experiment to
higher Reynolds numbers in order to compare with 3-m experiment torque data from Zimmerman
et al. [4] (stars). Dotted, dashed and solid curves indicate no baffles, 10% and 5% baffle height
designs respectively. For clarity, we only show error bars for smooth in 40-cm and for the 3-m
experiment.

59



The exponent a, approaches a = 2 (the Kolmogorov scaling) asymptotically for increasing

Reynolds number in shear-driven turbulence, as shown in [30, 31]. In Table 3.1 we observe that

for the 40-cm experiment, runs with baffles have higher exponents a than the smooth design,

indicating that a tripped boundary layer and pressure drop across the baffles are improving the

angular momentum transport. This is well documented by van den Berg et al. [31] and Zhu

et al. [62] in which they showed in a Taylor-Couette experiment how wall roughness facilitates

transport until the Kolmogorov scaling (in which viscosity dependence is eliminated) is reached,

leading to purely pressure drop dominated flows. It is also important to mention that before the

Kolmogorov scaling regime where the exponent converges to 2, there is a transition region where

the exponent could be higher than 2 for an intermediate range of Reynolds numbers as is well

known in boundary layer theory for the case for rough boundary pipe flows. See for instance

[81].

The prefactor b in Table 3.1 is a geometry-dependent friction factor associated with the gap

between the sphere boundaries as indicated by [4] and it is expected to be lower for wider gaps.

The radius ratio for Earth-like spherical Couette is Γ = ri/ro = 0.35 and for Taylor-Couette used

in [1] Γ = 0.7245. We would expect the prefactors b in the 40-cm experiment to be of the same

order of 3-m, since the radius ratio is the same, but this is not the case. They all vary between the

values of 3-m and Taylor-Couette, straight being higher than scoop, and scoop higher than wedge

in each baffle configuration and size. Also, the prefactors in 10% baffles are higher on average

than the 5% baffles (except for wedge 10%), which is consistent with [4].

We extrapolate these power laws into the parameter space of the 3-m experiment, (Figure

3.7) to estimate torque and power demands from these baffle designs, which are important design

data. First, we notice that the power law for the smooth case seems to align with that of the

60



3-m experiment at high Re; although the slope is smaller, the magnitude is very close relative to

the other projections. This might indicate that the inner sphere of the 3-m experiment is already

affected by its slight roughness that is higher than that of the smooth sphere of the 40-cm. It

might also indicate that for the parameters in the 40-cm experiment we have not reached the

same regime observed in the power law for 3-m. [4]. This is consistent with the fact that the

exponent a is the lowest among all the designs in 40-cm.

We can see in Figure 3.7 that the extrapolated torque for all 10% baffles is approximately 8

times bigger than 3-m at Re ≈ 3.0× 107, which is the highest Re recorded for this measurement

in 3-m. Also, the extrapolated torque for the chevron and straight 5% baffles at this Re is 4 times

bigger than 3-m. Nevertheless, the 5% height alpha baffles show the highest torque projection

among all of them, even compared to the 10% baffles. Since the fitting exponent a is greater than

2 at the 40-cm Reynolds number, it is expected that the projection into 3-m parameter space may

be overestimated.

Even though we only have three data points, there seems to be linear proportionality

between the torque and the height of the baffles at high Re. This is not the case for Taylor-

Couette flows discussed in [63] where the relation between these two parameter seems to be

closer to quadratic. A linear dependence is consistent with the increase of surface area of the

baffles. However, more measurements for different heights of baffles would be required for a

better understanding of the dependence in spherical Couette flows.
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Figure 3.8: Rossby number dependence of the measured inner sphere torque. The magnitude of
the torque at a given Ro and Re is normalized by G∞(Re), the torque expected at that Reynolds
number if the outer sphere were not rotating. Error bars for straight 10% are shown in the range
of bistable states are representative for all baffles Ro−1 > 0.6. The dashed line indicates the
location of the peak for maximum relative dimensionless torque in the 40-cm experiment with
smooth inner sphere.
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3.2.1.2 Rossby number dependence

When we differentially rotate both spheres, the Coriolis forces shape the flow, significantly

changing the states. The Rossby number (defined in section 2.4) characterizes the differential

rotation and from past work determines which dynamical state is observed. In order to isolate the

dependence of the dynamics on the Rossby number, we normalize the dimensionless torque by

G∞. Previous work by Zimmerman et al. [4] and Paoletti and Lathrop [1] found that the torque,

for both Taylor-Couette and spherical Couette flows, can be factorized at high Reynolds number

(Re ≈ 106) as

G(Ro,Re) = f(Ro)G∞(Re), (3.2)

where G∞(Re) is the torque with outer sphere stationary, i.e. Ro = ∞. Then G/G∞ is a function

of Ro only, and the torque G scales like G∞(Re) for a fixed Ro ̸= ∞.

The form of G/G∞(Re) in Figure 3.8 is similar to the one in 3-m [4] and in Taylor-Couette

flows [1]. The main difference is the amplitude and location of the peaks for maximum relative

torque. For 10% chevron scoop and 10% straight baffles the amplitude is more than three times

the scaled peak torque in the 3-m system (see Table 3.2 for actual values). This shows a much

stronger forcing for differential rotation relative to a stationary outer sphere and indicates that

the coupling between the spheres is significantly higher with baffles. We can also see that the

amplitude of the peak for chevron wedge is the lowest of the 10% baffle designs. This same

proportion between these designs prevails for straight and chevron 5%; however, the amplitude

changes. This indicates a lower coupling with lower baffle height, a similar result to that of

Taylor-Couette flows [62]. Less obvious are the reasons for the difference in torque between
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wedge and scoop modes for the same baffle design: the peak amplitude for scoop mode is higher

than wedge mode. The same behavior happens for alpha baffles of 5% height, but if compared to

the other 5% models, it is higher than all of them. Additionally, alpha scoop 5% is even higher

than chevron wedge 10%. This suggests a more effective coupling at the expense of less absolute

torque, i.e., a smaller G∞ for the case of alpha baffles.

Another interesting feature is the location of the relative torque maxima, as can be seen

in Table 3.2. It moves to lower inverse Rossby numbers as we increase baffle height. This is

expected as indicated in [4, 82] where a reduction in the gap would imply an amplification of the

fluid engagement, or coupling between the boundaries. With this, a lower rotation rate in the inner

boundary is required to match the fluid drag and angular momentum transferred to the fluid from

the outer boundary, corresponding to a reduction in the inverse Rossby number. This reduction of

the gap also explains why this maximum is located at lower values for spherical Couette versus

Taylor-Couette flows. The location of the maximum also changes for wedge versus scoop modes.

All of these differences suggest a very rich dynamics happening for different models of baffles

that required more than global measurements (like torque) to be described, and that motivated the

velocimetry studies in section 3.2.2.

For Ro > 0 we observed bistable states that happen between 0.6 < Ro−1 < 1 in Figure

3.8 in the region that also sees a large increase torque. The same behavior happens for all

baffle designs. These results are similar in location and amplitude to bistable states in the 3-m

experiment that are characterized in more detail in [46]. The time dynamics can be described as a

spontaneous jump between two torque values: a slow decay into the lower torque state (named L)

followed by a jump into a higher torque state (H). The timing between these states, and the time

spent in each one of them, as reported in [4, 46], depends highly on the Rossby number. This
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Table 3.2: Location and amplitude of the maxima in Figure 3.8 and Taylor-Couette flows in [1].
Experiment G/G∞ Ro−1

3-m (Γ = 0.35) [4] 1.20 -0.05
Smooth 1.04 -0.07
Straight 10% 2.86 -0.25
Chevron scoop 10% 3.10 -0.25
Chevron wedge 10% 2.27 -0.21
Straight 5% 2.21 -0.16
Chevron scoop 5% 2.13 -0.16
Chevron wedge 5% 1.77 -0.14
Alpha scoop 5% 2.53 -0.14
Alpha wedge 5% 2.23 -0.16
Taylor-Couette (Γ = 0.72) [1] 1.25 -0.25

bi-stability was more evident in torque fluctuations with baffles relative to the smooth design,

presumably because the engagement of the boundaries with the flow is higher.

3.2.2 Velocimetry

In this section we will show results of the velocimetry measurements performed using PIV

techniques in the equatorial and meridional plane of our 40-cm spherical Couette apparatus. For

the velocimetry in the equatorial plane, we focused on the dependence of the velocity as a function

of radius since, by symmetry, we expect certain invariance of the velocity field as a function of

the azimuthal angle φ. For our study, we only focused on time averages, so wave motion was

not analyzed in our measurements, although the presence of waves in spherical Couette setup is

well known (see for example [3, 48, 83]). For the meridional plane we inspected the dynamics at

constant Rossby numbers corresponding to the maximum G/G∞ for reasons we will explain in

the next section.

Recordings of 1 s of duration were performed using a high speed camera at 1000 Hz. The

rotation rate of the inner sphere is between 10-15 Hz around the maximum torque area for all the
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Figure 3.9: Radial velocity in the equatorial plane for all baffle designs. In color map: azimuthal
average of the velocity in the radial direction, normalized by the tangential velocity at the inner
sphere equator, as a function of the normalized radius (left vertical axis) for different Rossby
number (horizontal axis). Warm colors mean velocity in the direction outward from the inner
sphere and cool colors inward. The symbols show the radial average of each of the columns in
the color plot (indicated in the right vertical axis) as a function of Ro−1. The vertical dashed lines
indicate the location of the maximum relative torque G/G∞ for each baffle design.
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baffle designs, which means 10-15 rotations of the inner sphere per each 1-s movie taken.

3.2.2.1 Equatorial Plane

The dimensionless torque measurements in section 3.2.1 show very different dynamics

for each design as a function of Ro−1, mainly by the location and amplitude of the maximum

relative torque peak (see Figure 3.8). This point of maximum relative torque has shown the

highest amplification of magnetic field in the cylindrical radial direction [4] for the liquid sodium

flows. We performed velocimetry for a range of Ro values around the peak with Re ≈ 106. We

normalized the velocities by the tangential velocity of the inner sphere at the equator, Ωiri, where

ri is the radius of the inner sphere, and Ωi its angular frequency. We also define the normalized

radius as ρ = (r − ri)/l, where l = ro − ri = 12 cm is the gap between the spheres.

In Figure 3.9 and Figure 3.10 we show color plots of the normalized radial velocity as a

function of the normalized radius ur(ρ) and the normalized azimuthal velocity as a function of

the normalized radius uφ(ρ). We have also shown in each graph the average velocity only as a

function of Ro−1. Additionally, the location of the maxima relative torque for each baffle design

(shown in Figure 3.8 and listed in Table 3.2) is indicated with a dashed line on each of the plots.

Since on average the bistable states occur on a time scale bigger than the camera recording time

lapse, we have omitted velocity measurements for the Ro where bistability occurs.

Looking at the smooth case first, we notice that the velocity in the azimuthal direction

(see Figure 3.10) is much higher on average than the radial velocity (see Figure 3.9). Near the

region of maximum torque the azimuthal velocity reaches a minimum and there is an equatorial

jet radially outward. This equatorial jet strengthens as we approach to the maximum torque peak.
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Figure 3.10: Azimuthal velocity in the equatorial plane for all baffle designs. In color map:
azimuthal average of the velocity in the azimuthal direction, normalized by the tangential velocity
at the inner sphere equator, as a function of the normalized radius (left vertical axis) for different
Rossby number (horizontal axis). Cool colors mean velocity in the opposite direction of the
rotation of the inner sphere and warm colors mean moving in the same direction. The symbols
show the radial average of each of the columns in the color plot (indicated in the right vertical
axis) as a function of Ro−1. The vertical dashed lines indicate the location of the maximum
relative torque G/G∞ for each baffle design.
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The radial velocity seems irregular and fluctuating in comparison to the azimuthal component.

This could be due to the low values of the radial velocities compared to the azimuthal velocities,

or because of dynamics that are longer term than our 1 s measurements. The Rossby number for

the formation of this jet coincides with the Rossby number for the peak of highest amplification

of the radial magnetic field in the 3-m system, which reinforces the importance of the mean flows

in the amplification process [10].

For the straight 10% baffles, we see a significant increase in the maximum relative radial

velocity with respect to the smooth design. This is by itself a very important result: baffles have

increased the coupling between the inner sphere and the fluid, resulting in a better radial transfer

of angular momentum. We reiterate that the normalization is by the tangential velocity of the

inner sphere at the equator, so this increase is not related to the angular velocity of the spheres,

rather to the interaction between its boundary and the flow. The equatorial jet seems more stable

and uniform here than in the smooth design, and we can see that it spreads out through the entire

radius at the peak of maximum torque.

If we compare this last result with Wicht [11] in Figure 3.5, we see that the Rossby number

for the equatorial jet instability (dotted line) coincides with the Rossby number of maximum

torque (dashed line) in the parameter space. We show one Reynolds number in the color plots

of this section. Measurements done for different Re confirm that the Rossby number for the

maximum torque peak does not change significantly with Re for any of the baffle designs.

For the chevron scoop mode with 10% baffle height, we see that the general behavior

and intensities are very similar to straight 10% baffles although the equatorial jet seems more

uniform when changing Rossby numbers around the maximum torque peak. This might be due

to the baffle orientation: if you see Figure 3.4, scoop mode orientation pushes the fluid into the
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equatorial plane due to the inclination of the baffles. Additional data in favor of this hypothesis

will be shown in section 3.2.2.2. A similar result as in the previous plots is seen for the azimuthal

velocity: a lower uφ for the maximum G/G∞ and an inner-sphere-dominated dynamics in this

region.

For the chevron wedge mode with 10% baffle height, we can see (Figure 3.9) that now

the radial profile is different from previous ones: the equatorial jet has very low intensity and

has spread in the radial direction. It also looks non-uniform and there is a negative inward flow

around Ro−1 ≈ −0.5. This shows a different dynamics for this mode, with a less stable equatorial

jet and time scales slower than 1 s for this regime.

A possible explanation for the lower radial amplitudes is again the orientation of the baffles

that now, in wedge mode, push the velocity upward from the equator in the direction of the poles,

causing a narrower and weaker equatorial jet. This might be the reason that the absolute torque

of the wedge mode is higher than scoop mode (Figure 3.6): the orientation of the blades pulls the

fluid in the negative radial direction at the equator, creating pressure gradient unfavorable for the

equatorial jet that happens due to centrifugal forces. This competition between a centrifugal force

and a negative pressure gradient requires more torque in the inner motor, causing the difference

in the absolute torque plots.

We now proceed to compare specifically 10% baffles with 5% for the chevron shape, in

the second to last row of Figure 3.9 and Figure 3.10. There the velocity profiles are very similar

between both baffles heights but the amplitudes are smaller for the 5% height; hence, the coupling

has reduced with respect to the 10% baffle design as expected. For wedge mode, the negative

circulation and irregularity in the radial flow is again present, and for chevron scoop 5% we also

see a well formed and stable equatorial jet around the maximum torque region.
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Finally for alpha baffles, the results have the same characteristic peak at maximum torque

for the radial velocity with similar amplitudes to the chevron 5% cases, except for the wedge

mode, where we can see now a clear jet being formed. Although it seems to be more unstable

than the alpha scoop mode, which is consistent with previous wedge baffle results. We can

also observe an inward flow in the radial plot around Ro−1 = −0.5 as it was observed for

chevron wedge 10%. For the azimuthal velocity similar behavior to the other baffles and modes

is observed, although now the values near the maximum torque, i.e. at the minimum azimuthal

velocity, seem to be greater than previous chevron 5% cases, implying that the coupling with the

inner sphere is stronger. There seems to be a mismatch between the torque peak (dashed vertical

line) and the minimum for azimuthal velocity for alpha baffles. A similar phenomenon was

reported by Zimmerman et al. [4] in the 3-m experiment, where they noticed that the minimum

of Ω-effect, i.e., a minimum on the gradient of azimuthal velocity, is offset from the torque

maximum peak.

Besides the different dynamics observed for wedge and scoop mode in both chevron and

alpha designs, the aforementioned features inspired the results obtained in the next section: near

this maximum torque region, the azimuthal velocity reaches a minimum. According to Holme

[56] the poloidal shear is at a maximum where the toroidal shear is close to zero, which is

consistent with our observations. This motivated us to perform measurements in the meridional

plane; a task we thought would be very difficult to achieve due to the the high velocities that

rotating fluid experiments normally have in the azimuthal direction, i.e. the direction of rotation.

With these low azimuthal velocities at the maximum torque region, a laser sheet in the meridional

plane could illuminate particles for enough time to be captured by the high speed camera.
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Figure 3.11: Spherical radial component of the velocity field (ur) in the meridional plane (r/ro, θ)
normalized by the tangential speed in the inner sphere at the equator, for different baffle designs
and modes. We normalize the radial coordinate by the radius of the outer sphere r/ro. Warm
colors are outward radial flows, and cold colors are inward radial flows.
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3.2.2.2 Meridional Plane

We now present results of the velocity field in the meridional plane (φ = const.) at a fixed

Rossby number equal to the corresponding maximum torque for each baffle design (refer to Table

3.2). Due to the low velocities in the azimuthal direction at this particular region, as shown in

the previous section, we could have particle tracks long enough to be detected by the high speed

camera. It is important to mention that this still brings a cutoff for the maximum velocity we can

measure: assuming the width of the laser is 3 mm, the camera records at 1000 fps and that we

discard tracks shorter than 4 frames, the maximum speed we can detect is around 1 m/s, which

is close to the maximum speed we measured on the meridional plane but high enough to not

saturate the plots.

Since we fixed Ro, we did a sweep for different Reynolds numbers to compare the difference

in the dynamics. Averages between different Reynolds numbers were performed over the normalized

velocity fields only for those states in which the dynamics was similar enough; in our case, for

1 × 106 < Re < 2 × 106. Although we only show results for the 5% baffle height designs

in this section, we expect 10% meridional plots to behave similarly but with higher relative

velocities given our results comparing 5% and 10% torque and equatorial velocity measurements

in previous sections.

In Figure 3.11 we can see the spherical radial component of the velocity field (ur) in the

meridional plane, as a function of r and θ, for each baffle design. First, we notice a clear increase

in the velocities with straight baffles, the equatorial jet is stronger by a factor of approximately

2 in the bulk of the jet, and there is a broader area of inward flow, or recirculation, above it.

The main kinetic energy is stored at the equatorial jet [10, 84], so this increase is by itself a
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Figure 3.12: Meridional component of the velocity field (uθ) in the meridional plane (r/ro, θ)
normalized by the tangential speed in the inner sphere at the equator, for different baffle designs
and modes. We normalize the radial coordinate by the radius of the outer sphere r/ro. Warm
color are flows from the north pole toward the equatorial plane, and cold colors are toward the
pole.
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favorable result for dynamo action. If we now take a look at the results for the chevron design,

we notice that scoop and wedge mode show different topologies. The radial flows in the chevron

scoop mode are similar to smooth and straight with an equatorial jet that is more intense than the

smooth case but with less meridional circulation than the straight case. If we now take a look

at the chevron wedge mode, we notice the equatorial jet is much weaker here, even weaker than

the smooth case, but there is more inward flow above the equatorial jet. This is consistent with

the torque plots in Figure 3.8 where chevron wedge 5% requires less torque to run at constant

speed at maximum Rossby than chevron scoop 5%. It also agrees with the equatorial plots in

Figure 3.9 that show this difference in the equatorial plane intensities. A very similar result can

be observed for the meridional component of the velocity field of the baffle designs mentioned

above (smooth, straight and chevron) in Figure 3.12: an increase of the intensities when baffles

are added specially with straight baffles and a different topology in the flows for chevron scoop

and wedge.

Alpha baffles combine the stronger coupling observed in the straight baffles case, with

the change in the topologies due to an asymmetric design (see Figure ??). The results are very

promising: we can see that the topology and intensities of the scoop mode are very similar to the

straight baffles case. For the wedge mode now the equatorial jet in Figure 3.11 is much wider

and intense than the chevron wedge mode, with values that are on the same order of magnitude

as the scoop mode, with a stronger recirculation. For the meridional flows we now notice a

negative region above the equatorial planes, which indicates that the flow is going upward in the

bulk of the jet, creating a different topology than the scoop mode. We also notice a thinner

recirculation layer near the outer sphere boundary and the shaft. Those recirculation layers

likely extend into the region outside the measurement volume. These topologies in the flows
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Figure 3.13: Local time average azimuthal vorticity normalized by the inner angular frequency
in the meridional plane (r/ro, θ) for different baffle designs and modes. We normalize the radial
coordinate by the radius of the outer sphere r/ro. Negative values point out of the page.

are consistent with the interpretation given before about the orientation of the blades and the

direction of the flow transported: scoop modes push the flow in the direction of the equatorial

plane, amplifying its intensity; however, wedge mode takes it out of the equatorial plane and

together with the centrifugal forces, transfers the energy into the meridional directions. With the

alpha baffle designs, we will gain similar coupling as with straight baffles while doubling the

parameter space like with chevron baffles. This is important for future design considerations in

the 3-m experiment.

As mentioned before, the vorticity in the meridional plane, combined with the flows in the

azimuthal direction indicate the helicity of the flows in the meridional planes. Figure 3.13 shows

the local vorticity of the flows in the meridional plane for all the baffle designs. The region around
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the equator for straight, chevron scoop and alpha scoop with respect to the smooth design, shows

a significant increase compared to other regions of the meridional plane. Additionally, the region

of high vorticity is wider for chevron wedge and alpha wedge and it is located now at a latitude

above the equator, showing even a positive vorticity in the region adjacent to the inner sphere

at the equator level. This positive vorticity region is more evident for alpha wedge mode, and

is consistent with the meridional flows in Figure 3.12 that show a negative meridional velocity

in this region. Such redistribution of the vorticity can be favorable for dynamo action [53], by

increasing the α-effect in the 3-m experiment and hence reducing the critical magnetic Reynolds

number for dynamo action [54, 57, 58]. Additionally, according to some authors [85] having a

gradient of helicity is an important ingredient for dynamo generation. With alpha wedge baffles

we would have a configuration that allows us to explore this effect in the 3-m experiment.

The properties for the vorticity generated by alpha baffles, combined with the highest

values for the averaged azimuthal velocity shown in section 3.2.2.1, suggest that the alpha design

generates the most promising flows for achieving an enhancement of the helicity in the 3-m

experiment.
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Chapter 4: The 3-m Upgrade

In this chapter we will discuss the modification performed to the 3-m experiment. This

is the main contribution of this doctoral dissertation. Given the results for the 40-cm water

experiment, we decided to weld 5% alpha baffles (see discussion section in chapter 3) into the

inner sphere of the experiment. Additionally, the experiment was failing: the inner motor was

not able to provide enough torque to reach the requested rotation rates, which is an indication

that something might have been wrong with the bottom inner bearing. In Figure 4.1 we provide

cross sections of the vessel taken from Triana [13] about the schematics of the 3-m experiment.

Detailed sections views of the top and bottom bearing arrangements are particularly important

for the disassembling and assembling of the experiment. We encourage anyone interested in the

engineering of these arrangements (this author hopes there is no need to open the experiment in

the near future) to check in detail Triana [13] and Zimmerman [14].

In order to open the experiment and safely extract the inner sphere to weld the baffles, we

needed first to drain the 12 tons of sodium contained in the outer vessel. Given the considerable

dangers that could arise during this process, a carefully planned, studied and reviewed Standard

Operation Procedure (SOP) was written (See Appendices) in collaboration with Artur Perevalov,

Heidi Myers, Don Martin, Nolan Ballew and Daniel Lathrop. The idea was to extract the

sodium in a single day operation, store it in a storage tank while the modification took place
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Figure 4.1: Vessel cross section with the inner sphere and shaft. On top section view: Detail of
the shaft and its attachment to the lid. The inner race of the main top bearing is free to slide axially
on the lid shaft, allowing for thermal expansion of the vessel. The locknut on the shaft, above the
top shaft bearing, holds the entire weight of the inner sphere and shaft. Two lip seals prevent fluid
from leaking into the bearing. On bottom section view: Detail of shaft and the bayonet coupler.
The bottom end of the shaft can move axially on the bayonet. Individual drawings taken from
Triana [13] and compiled by this author.
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and, after the experiment was partially assembled, put the sodium back (also in a single day

operation), finishing up the remaining details of the assembly, and run the experiment. Given

the extreme importance of the draining day, we separate this chapter in two sections: before and

after the transfer. The first section includes the design of the SOP, the transfer operation, the

sodium plumbing, and the storage tank design. The second section includes the sodium cleaning

operation, the disassembly of the inner sphere, the baffles design and construction, and the final

sodium transfer.

4.1 Before Transfer

4.1.1 SOP Overview

After careful consideration of many possible plans for extraction, and after long discussion

with many colleagues, in particular with Don Martin and Nolan Ballew, we came up with a plan

that we will narrate in the present section.

The idea was to design a curved dip tube that would go through one of the port of the

experiment in a hot insertion (with the sodium molten) and sit on the bottom of the outer sphere,

as close as possible to the bottom part of the inner sphere shaft (see Figure 4.1 and diagram on

Figure 4.2). Once there, we would connect the dip tube to a heated transfer line that would be

connected to the storage tank. Once the connection was made, we would raise the pressure on the

sphere vessel and after the goal pressure is reached, we would open a valve on top of the dip tube

that would allow the sodium to flow from the sphere to the storage tank, kept at a lower pressure.

The refilling process, of sodium from the tank to the experiment, involved a similar technique but

with the dip tube already in place in the storage tank, so no hot insertion was necessary. We will
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Figure 4.2: Diagram of the transfer plan before the insertion of the dip tube.
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Figure 4.3: Aerial picture of the storage tank.

discuss this in more detail in the next section.

The scheme described above involved the design and construction of different parts, pieces,

and piping that we can separate into three broad groups: the sodium plumbing, the storage tank

and the gas injection system. The author of this dissertation was in charge of the sodium plumbing

system entirely, took part in the installation and design of the oil lines for the storage tank, and

assisted in the installation and design of the Gas Injection System which Artur Perevalov took

charge of. In the upcoming subsection we will detail the construction and design process of these

three items with special consideration for the upcoming graduate students that will take charge

of this project.
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4.1.2 Storage Tank

A picture of the storage tank can be seen in Figure 4.3 and a detailed drawing can be found

in the Appendices. It was designed and built by Central Fabricators Inc. It is a 3450 gallons

cylindrical vessel with semi-spherical ends. Is made of a carbon steel alloy (SA 516 Gr. 70)

of 1/4” thickness to improve thermal conductivity, and designed for 15 psig of internal pressure

at 400 F. It includes two dimple jackets used to heat the interior of the container. The dimple

jacket was designed to cover a sufficient area that would allow the sodium to melt in a reasonable

time (less than two days, which is the normal time it takes for melting the sodium in the 3-m

experiment). The jacket sections provide a coverage of 30 ft2 on the bottom section of the tank.

It includes four nozzles, three on top and one on the bottom. The top three nozzles were used

for instrumentation, gas injection, and for the two insertion tubes: a short one for transferring

the sodium from the sphere to the tank, and a long one that sits on the tank’s bottom nozzle (the

fourth one). The whole tank was installed over steel blocks, to provide an inclination that would

guarantee that most of the molten sodium would accumulate in the flanged bottom nozzle, where

the long dip tube was sitting for the final transfer from tank to sphere. Additionally, the tank

included a manway for future cleaning and disposal. The vessel and jackets were built, tested and

stamped per the ASME code. The vessel exterior received a DTM Epoxy Mastic for preventing

rust.

The dimple jackets needed to be connected to the experiment heater exchangers and needed

to be able to work in parallel with the experiment. Careful calculations (done by Artur Perevalov)

were performed to determine if the dimple jacket should be connected in series or in parallel. We

decided to use parallel connections since it provided a more uniform heat distribution (refer to
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Figure 4.4: Oil lines connection diagram to the storage tank and the sphere. In red are the parts
we added and in black the preexisting.
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his dissertation for detailed calculations). The design and plumbing system used is indicated in

Figure 4.4. We carefully designed these oil lines in anticipation of the most possible scenarios.

For instance, the quick connectors were added in the section closer to the wall, so all the remaining

oil in the pipes will stay with the tank after the draining process. The idea was to store the

tank outside the building after the transfer was done. Additionally, many valves were added to

guarantee that the sections of the piping could be taken apart without a significant oil spilling in

the process. This pipe configuration allows to independently or simultaneously heat the tank and

sphere. For example: closing valves O4 and O3 and opening valves O1 and O1 will heat only the

tank (see the SOP in the Appendices). Finally, we filled out the dimple jackets and oil pipes with

heating oil, trying to prevent the presence of air bubbles inside which could potentially damage

the pump. This was accomplished by lifting one side of the end oil line of the tank at a higher

altitude than the dimple jacket, while pumping the oil manually from a barrel to the other end of

the tank’s oil line. Several heating tests were performed to ensure the functionality of the system

and to inspect for oil leaks.

4.1.3 Sodium Plumbing

The next section to consider is the sodium plumbing system which involves the design

and construction of the sphere dip tube, the extraction flange (which includes all the lip seal

installation for inserting the dip tube) and the transfer line (to connect the sphere with the tank).

A sketch of the dip tube can be seen in Figure 4.5 and a full mechanical drawing with

dimensions in the Appendices. After careful consideration we decided to go with a curved version

of the dip tube. Other designs included a sectioned one, straight at first and curving at the end.
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Figure 4.5: Cross section of the insertion diagram including the dip tube, the extraction flange,
the lid, the inner sphere and shaft
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Figure 4.6: Collection of dip tubes for tank and sphere.

This design was discarded and replaced with the curved one because it would make the insertion

process smoother, which was the most critical step in the whole transfer process. With that in

mind, careful consideration was taken to ensure the curvature radius of the dip tube could pass

through the port’s aperture at such an angle that would reach the base of the shaft in the outer

sphere vessel. This ensured that the least amount of sodium possible was left behind in the outer

vessel. The radius of curvature of the dip tube ended up being 520 cm (with this we mean that

the dip tube is just a section of a circle of radius of 520 cm) and with a length of 355 cm. Finally,

a ball valve was welded at the end of the dip tube. This was the crucial valve, the one that was

going to be opened to start the sodium flow to the tank.

Another set of straight dip tubes were designed: two for the tank, one short (for putting

the sodium into the tank), another long (for extracting the sodium from the tank to the sphere),

and one last short one for the sphere, for putting the sodium back to the experiment. A picture

can be seen in Figure 4.6. The straight dip tubes were cut from a single pipe and were welded
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Figure 4.7: Extraction flange diagram: (a) Port to valve flange connector. (b) Ball valve. (c) Lip
seal to valve connector. (d) Lip seal. (e) Lip seal holder. (f) O-ring. (g) O-ring holder. (h) During
insertion. (k) After insertion.

to the flanges, seen in the picture, by Nolan Ballew. The dip tubes and flanges were all made of

stainless steel 304.

The extraction flange is the assemblage of different components shown in Figure 4.7. The

purpose of this flange is to allow the hot insertion of the dip tube while preventing the air from

entering into the experiment. In order to achieve this the flange included a lip seal and an o-

ring. The lip seal will allow the movement of the dip tube while being able to hold around 1

psi of pressure in the sphere, and the o-ring secures the dip tube to the flange and provides a

better sealing when the pressure needs to be raised to 10 psi for the extraction, after it has reach

the bottom of the outer sphere. The process goes as indicated in Figure 4.7: First, the port to

valve flange connector, the ball valve and the lip seal to valve connector are welded together and

installed on the Port A of the experiment (ports’ labels are indicated on the lid of the experiment).

Then, the lip seal holder with the lip seal installed inside is bolted into the lip seal to the valve
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connector. At this stage, with the valve A closed of course, the extraction flange is ready to

receive the dip tube. When the insertion is going to take place, the o-ring and the o-ring holder

are placed in the dip tube. Once the tip of the dip tube has gone through the lip seals, the valve A

can be opened safely, and the insertion can proceed until the tube has reached the bottom. Once

secured against the bottom, the o-ring holder can be bolted into the lip seal holder, and this will

squeeze the o-ring against the dip tube, securing a better seal for the rest of the transfer. Finally,

a spacer is situated between the o-ring holder and the valve B of the dip tube, as shown in Figure

4.8. This serves as a better support of the dip tube and the transfer line (that will be bolted into

the end of the dip tube later on) to prevent the dip tube from pushing against the lip seals and

damaging them (even though the insertion is ready and most of the pressure in the experiment is

held by the o-ring, keeping the integrity of the lip seals is important when the dip tube is removed

after transfer). After the transfer takes place, this spacer will be used to lift the dip tube to prevent

it from being in contact with the remaining sodium left behind in the bottom of the vessel that

could cause the dip tube to get stuck when the sodium solidifies. Detailed drawings of each one

of these parts can be found in the Appendix section. Additionally, the SOP provides a much

detailed and rigorous description of the insertion process.

The final part of the sodium plumbing arrangement is the transfer line. It is a heated, 28-

foot-long, 1.5” of internal diameter, stainless steel flexible hose, with a maintenance temperature

of 120 C and three standard round pin thermocouple plugs for monitoring (one in each end and

another in the center of the line). It was connected to a rotary potentiometer and then to a wall

plug to regulate the input voltage. A picture of the final installation of the hose during transfer

can be seen in Figure 4.9.
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Figure 4.8: Spacer to support the dip tube and transfer line.

Figure 4.9: Picture of the final installation of the transfer line (indicated by red arrows). On the
right the tip of the sphere installation. On the left, the tank installation.
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4.1.4 Gas Injection System

As you can see on the diagram in Figure 4.2, the gas injection system is a very important

part of the transfer process. Both the tank and the sphere need to be pressurized at 10-15

psi. Additionally, this pressurization process needed to be sustained at high flow-rates. This

is because the estimated time for draining was around 2 hours which implied that 12 tons of

sodium, equivalent to approximately 12000 liters (3500 gallons), needed to be drained at a rate

of 2-5 liters per second. This is why 5 nitrogen cylinders were used to provide the flow rates

needed. We needed to provide enough nitrogen to replace the sodium leaving the sphere (or

tank, when putting the sodium back) to replace the space and keep the same pressure of 10 psi

required to keep the sodium flowing. For a detailed discussion on the gas handling system refer

to Artur Pervalov PhD dissertation, and also to the Appendices section to see the diagrams for

the different gas manifolds in the SOP.

One important function of the gas injection system was to inert the container and pipes

prior to the sodium transfer. It is important to remove most of the oxygen (less than 2% of

oxygen content is desired) in both the sphere and the tank. In order to do that, we pressurized

both containers over several cycles: we raised the pressure to 5 psi, then released the air inside,

then we pressurized again, and drained, over and over until the oxygen content of the output gas

was less than 2%. To accomplish that we used a digital oxygen sensor installed in one of the

exhaust hoses (see the center nozzle in the tank picture in Figure 4.3). The transfer line was also

purged of oxygen in a similar way and the dip tube was purged before insertion as indicated in

the SOP.
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4.1.5 Initial Disassembly

With all the parts of the transfer system explained in the sections above, we proceeded to

remove the parts of the experiment that were in the way and needed to be removed to guarantee

the safety of the procedure. First, we dismounted the outer motor and outer motor frame of the

experiment. Then we proceeded to remove the inner motor with its frame. We used the 5-tons

crane located in the high bay of the IREAP building where the experiment is located. Then we

removed most of the instrumentation and left in place the temperature sensors and the pressure

sensors. Most of these instruments were located in a new port that we designed and built. A total

of 3 ports were installed in the sphere after this stage: the visualization windows, the gas port

and the extraction flange. In the gas port we installed a pressure sensor and a thermocouple to

measure the temperature of the sodium. Another gas port was installed in the tank top nozzle as

indicated in the diagram in Figure 4.11.

The installation of these ports on the lid of the experiment were performed following an

SOP inherited from the previous 3-m graduate student team, and modified accordingly by us. It

involved a gloved bag to make sure the least amount of oxygen entered the experiment while

exposing the interior of the experiment when replacing the ports, two jacks and some threaded

rods bolted into the port. A picture of the procedure is shown in Figure 4.10.

The diagram in Figure 4.11 shows the schematic of the transfer during the extraction

process after the dip tube is inserted. With this configuration the sodium was safely extracted

from the sphere into the storage tank. During the transfer we monitored the process by measuring

the height of the sodium with a laser distance meter through a visualization window installed in

one of the ports of the experiment as can be seen in Figure 4.12. Based on the change of height
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Figure 4.10: Picture of the ports installation procedure. (a) Extraction flange port to be installed.
(b) Jacks used to lift the ports that had gotten stuck by solidified sodium. (c) Cleaning tools used
to degrease the surface. (d) Visualization port already installed. (e) Artur.

per unit time, an estimation of the flow speed and draining time were performed. Additionally, a

flow meter was installed in one of the nozzles in the tank to corroborate the flow rate estimates.

Artur Perevalov developed a software to perform these estimates in real time.

The presence of this visualization windows was crucial to overcome one of the difficulties

that we encountered during the initial transfer operation: by the end of the first day of heating,

we noticed that the liquid sodium level was rising above the beginning of the port, right at the

sphere boundary (see Figure 4.1 and appendixes). This should have not been happening since the

window port was supposed to be sealed, so a bubble must have formed between the glass surface

and the sphere vessel boundary. This could only be happening because there was a leak on the

windows port. We could remediate the situation by simply reducing the heating and hence stop

the expansion of the liquid metal. We did not fix the leak because it was small compared to the
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Figure 4.11: Diagram of the transfer plan after the insertion of the dip tube.
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Figure 4.12: Visualization window on one of the ports of the experiment. Liquid sodium can be
spotted from the window.

amount of gas that we would inject on the next day. We just needed to be careful that the sodium

level did not reach the windows, to prevent leaks.

4.2 After Transfer

4.2.1 Final Disassembly

After the sodium was transferred and the system cooled down, we proceeded to disassemble

the remaining parts of the experiment. Previously, most of the electronics had been removed,

leaving in place only the instrumentation for monitoring the transfer, like the pressure sensors

and temperature sensors. The top outer bearing (see diagram in Figure 4.1) was removed at this

stage prior to the transfer. It was removed after the inner frame. The next step was to remove the

dip tube that was still inserted. This was performed in a similar way as the insertions, with the

support of the crane. Since the sphere was slightly pressurized (∼ 1 psi) there was no major risk,

and the seals could get damaged during the extraction of the dip tube. With the ball valve A closed

after the dip tube was removed, the vessel was sealed. By removing the gear belt and the bolts
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Figure 4.13: Flying inner sphere-shaft-lid combo. In the picture you can see the pink sodium
covering the combo.

that secured the lid to the sphere vessel (see diagram in Figure 4.1), the inner sphere-shaft-lid

combo was safe to fly, as shown in Figure 4.13.

Once the inner sphere and shaft was extracted, we removed the top locknut (see diagram

in Figure 4.1) which in theory would release the lid to move upward but that was not the case.

The reason was that the tight fit between the top inner bearing and the shaft was not allowing the

lid to slide upward and decouple from the shaft. In the diagram 4.1 it can be seen that the lid is

bolted to the Bearing Holder (in yellow) which pushes the bearing upward when lifting the lid.

After careful consideration, the solution we came up with was to cool down the shaft and heat

the bearing in such a way that a thermal gradient is maintained across both objects, hopefully

releasing the bearing. We had to additionally secure the inner sphere to the ground to prevent it

from lifting. For this we used some chains to tighten the inner sphere to the frame of the cube

96



Figure 4.14: Installation used to release the top inner bearing from the shaft. Left arrow points
at the liquid nitrogen hose pouring liquid inside the shaft aperture. Right arrow points at the heat
tape used to heat up the bearing.

(the metal frame that contains the 3-m experiment). After a few hours heating the inner bearing

with some heat tapes, and applying liquid nitrogen to the interior of the shaft, the lid finally got

released (not without a scary ”pop”). In Figure 4.14 you can see the arrangement that we used in

this process.

Once the lid and the shaft were disassembled, we proceeded to carefully clean each one

of the parts, starting with a solution of isopropyl alcohol with 10% water to remove the bigger

layers of sodium and letting it oxidize overnight. Repeated applications of these solutions worked

to remove the excess of sodium but we recommend transitioning to 100% water once there is

total certainty that the sodium was either oxidized or removed. Alcohol is not very effective

at removing the last layer of sodium oxides. Prior to this cleaning stage, we had many practice
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sessions cleaning old containers of sodium, including a barrel with almost 100 pounds of sodium.

We hired a cleaning company to take care of the inside of the outer vessel, given the lack of

equipment required for the safety of this operation, including respiration masks and full hazmat

suits. The cleaning took place in a two-day operation. After removing most of the sodium chunks

from the bottom, they proceeded to seal the vessel and spray water vapor. The remaining water

and sodium hydroxide solution leftovers were removed the next day and the interior mopped and

cleaned by us the day after.

4.2.2 Fixing the Outer-Inner Sphere Coupler

When the inner sphere was set horizontally for cleaning we could, for the first time, take

a look at the inner bottom bearing (see Figure 4.15 and compare with the section view in Figure

4.1). There was clear evidence of sodium in the bearing which might have been the reason for

failure. Additionally the chromium sleeve that was added to improve the sealing and reduce

the damage on the lip seal due to the friction, was peeled off from the bayonet coupler. That

could have also damaged the bearing, maybe even more likely than the sodium itself, because

ball bearings like these have been reported to work submerged in liquid metal before (with

considerable lifespan reduction).

This bearing also happened to be stuck, so a bearing remover was built by the IREAP

machinist Tom Weimar. Once the whole combo of bearing and bayonet coupler was removed,

taken apart and cleaned, we proceeded to inspect their condition. As you can see in Figure 4.15,

even after being cleaned many times, the bayonet coupler continued to generate an oxide layer.

The reason for this was the alloy chosen for its construction: an oiled infused brass alloy. The

98



Figure 4.15: Left: Bottom view of the inner bottom bearing and the bayonet coupler after the
bearing retainer and lip seals were removed. The dirty bearing can be spotted. Right: the new
stainless steel bayonet coupler (front) and the old one (back), oiled infused brass alloy. A layer
of oxide (white color) can still be seen after many wet cleans.

original idea was that the different alloys of brass and steel would prevent a cold weld between

the bayonet, bayonet coupler and copper pins (see drawing in Figure 4.1). However, this oiled

infused brass could have also influenced the damage on the bearing by absorbing the sodium

and damaging the sleeve. The actual reason for failure of the bearing is uncertain; however, too

many factors together seem to add up enough motives to decide to replace the bayonet coupler

for a new one. We decided to go with stainless steel 316 as the material of the coupler, and

brass for the pins. In this way, the brass pins between the two stainless steel pieces (the bayonet

and the coupler) would still prevent a cold weld. The detailed drawings can be found in the

Appendices section and were made by this author; however, due to the high precision required

for the construction of this piece, Tom was in charge of its fabrication.

99



Figure 4.16: Left: Smooth inner sphere. Right: Rough inner sphere with alpha baffles installed.

4.2.3 Baffles design and construction

After the shaft was removed from the inner sphere for deep cleaning and to ensure there

was no sodium left in the bolt holes, threads and corners; it was assembled again and shipped

to Central Fabricators Inc. were a set of six alpha baffles of 1/2 inches thickness and one inch

height (corresponding to a 5% radius height as in the water experiment in section 3) were welded

on. A set of detailed drawings can be seen in the Appendices. After the welding took place, the

new inner sphere and shaft were taken to House of Balance for a dynamical balancing at 900

rpm, even though the experiment will not reach such speeds. A comparative picture can be seen

in Figure 4.16.

Once the sphere arrived back from the balancing house, it was lifted vertically and a new set

of top inner and top outer bearing were assembled into the shaft-lid-inner sphere combo. When

installing the top inner bearing, we had to use liquid nitrogen again and heat tapes to install it.

In this case, the weight of the lid (almost 4000 lbs) was enough to push the bearing into its final

position. Once again, refer to Figure 4.1. The next step was to install the combo into the outer

sphere. We added Teflon sealing tape between the outer sphere vessel and the lid to ensure the
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Figure 4.17: Diagram of new baffled inner sphere. A full version with measures can be found in
the Appendices.
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sealing. Then, the lid was bolted into the outer vessel. At this point we were ready to transfer

the sodium back from the tank. Once the sphere was inert we started the sodium insertion SOP

(see Appendices) which follows the same idea as the extraction SOP(from sphere to tank): the

tank is heated, the sodium molten, then the pressure is raised to 10 psi and the sodium will flow

between tank and sphere. In this case there was no necessity of a dip tube hot insertion, since

it was already installed in the tank prior to being filled with sodium. See diagram in Figure

4.18. However, the sodium flow did not start immediately as expected. A solid sodium chunk

presumably was not molten in the inside of the tank dip tube by the moment of the transfer. It

took a couple more hours than estimated, and some heat blankets around the presumed location

of the chunk (we noticed the possible chunk location because the valve F of the tank was not

closing) to finally melted down and trigger the sodium flow.

Finally, the rest of the parts of the experiment were installed in the following order: the

instrumentation ports, the gear belt, the inner frame and the inner motor and the outer motor and

outer motor frame. One last section remains.

4.2.4 New Probe Installation

Our main contribution regarding instrumentation probes consisted in the design of another

finger probe. This is the name that was given to the set of two hall probes inserted in a stainless

steel tube, 30 cm into the sodium. These two probes are oriented 90 degrees inclined from each

other. The construction of this piece was made based on the preexisting one with the idea of

having two internal measurements that were diametrically opposed to study spatial correlations

between them. See Figure 4.19 and also the Appendices for a detailed description of the probe.
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Figure 4.18: Diagram of the transfer plan from tank to sphere. Sodium refilling.
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Figure 4.19: Finger probes. Top: the old one. Bottom: the new one.

These probes were inserted and calibrated with the magnets to test the proper orientation.

We turned the magnets on and rotated the probe until we measured a minimum (or maximum) of

voltage in the radial probe. This was an indication that we reached the desired alignment in the

cylindrical radial direction because the magnets are not expected to have azimuthal components.

Different intensities were used to corroborate the original alignment. During some of the runs

the new finger probe got loose and rotated. The data was later rotated as well and the results

were consistent. After this incident, the probes were secured in a better way to prevent it from

happening again.

This concludes the journey to the center of the 3-m experiment. In the next section we will

present the formal experimental set up with the new upgrades and the results of what we called

Magneto-hydrodynamic studies. Last but not least, we wanted to add that, for time constraints,

there were many events and tasks performed during the progress of this project that we did not

list in this section. The big ones, that we think are worth at least mentioning in this dissertation,

were the magnet wires repair and the scrubber repair, which were technical difficulties that we

had to overcome for the successful outcome of this project. We ask the reader to refer to the

authors and/or to Don H. Martin, for further information.
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Chapter 5: The 3-m Experiment: Magnetohydrodynamic Studies

5.1 Experimental Set-up

In this section we will describe the experimental set-up of the 3-m diameter spherical-

Couette sodium experiment including part of the design and instrumentation. This experiment

was designed and built by previous graduate students in this laboratory, Daniel Zimmerman and

Santiago Triana. We will describe the instrumentation installed by them that is used for our

measurements. For a more detailed experimental description, check their respective dissertations

[13, 14]. In the next section, we will show the results from the upgrade, and we will focus on

the new instrumentation added by me and my coworker Artur Perevalov during the completion

of this Ph.D.

In Figure 5.1 we can see a schematic of the 3-m experimental vessel. It has the same

radii ratio as the 40-cm experiment Γ = ri/ro = 0.35. The outer vessel is a 3-m diameter

spheroid, with an opening of approximately 1.6 meters in diameter at the top, where the lid with

the instruments is located. The bottom of the lid is also spherical so the system of lid and outer

sphere forms a spherical vessel (see Figure 4.1). The inner sphere is a 1 meter diameter stainless

steel. A 6 inches diameter cylindrical shaft, that extends almost 4 meters, connects the outer

and the inner sphere together. A bearing sits in the bottom of the outer sphere with a coupler

that allows both spheres to independently rotate. This bayonet coupler was modified by us, as
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Figure 5.1: The 3-m experiment vessel. (a) The three-meter outer sphere vessel. Half pipe oil
jacket surround the 1-inch thickness vessel for heating. (b) Smooth one-meter diameter inner
sphere, before remodeling. (c) Arrange of 31 magnetic Hall probes. (d) Pair of electromagnets
to apply quadrupole and dipole external magnetic field. (e) Instrumentation ports with pressure
sensors, temperature sensors and a set of magnetic probes.

indicated in the previous section (see section 4.2.2). Additional sets of bearings in the top and

bottom, hold the shaft and lid with the frame of the experiment and allow the differential rotation

of the spheres.

Two 260 kW motors drive the inner sphere and the outer sphere. The inner motor is

connected and directly aligned with the shaft. A torque sensor (Futek TFF-600), and an adapting

coupler, join the motor and the shaft together. The outer motor is geared to the outer sphere by

a belt with 400 teeth in a reduction gear on the lid of the experiment. The lid is where most of

the instrumentation is located. A desktop computer, with a PCI-DAS6402-16 acquisition card,

collects the data from mostly the magnetic and pressure probes. The temperature is acquired

directly by an Omega Wireless thermocouples in selected locations in the experiment: one in

contact with the sodium through one of the instrumentation ports, two on the outer shell on the
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side of the experiment and on the bottom. The last one is located on one of the magnets to prevent

overheating when running at high currents. Three 9 Volts lead batteries are located on the lid to

power up the instrumentation when rotating. A set of two electromagnets are aligned with the

axis of the experiment. They are capable of applying a dipole or quadrupole field for up to 200

G in the center of the configuration.

A total of 33 Hall Probes (Honeywell SS94A1F) were located initially in the experiment.

This allows us to measure magnetic fields in various critical locations in the experiment. A set of

2 Hall probes is located in one of the ports in the cylindrical radial and the azimuthal direction

at 30 cm into the sodium and 120 cm from the center. The remaining 31 probes are located

around the outer sphere vessel in the spherical radial direction in an arrangement that allows us

to extract the spherical harmonics decomposition of the field up to l = 4 (see section 2.3.2).

After upgrading the experiment we designed and constructed a new set of probes identical to the

2 internal ones (for a total of 35 Hall probes) but we placed them axially opposed to the first

set. This was done with the proposed study of spatial correlations, axial symmetry of the internal

fields, and as a backup plan - in case of failure or misalignment of the original set of internal

probes, which has been reported previously.

5.2 Results

In this chapter we will present the results of the 3-m experiment. We will include the

analysis of previous measurements taken by Santiago Triana and Daniel Zimmerman (some of

them published [4, 46, 47, 48] others not published) with the smooth inner sphere boundary. The

goal is to compared them with the results in the presence of the rough inner sphere boundary that
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we designed [78], installed and test during the completion of this PhD.

Similar to the 40-cm experiment, we will start analyzing the torque and its dependence

primarily on the Reynolds number Re and the Rossby number Ro. For the 3-m experiment we

will use the magnetic Reynolds number Rm instead of the Reynolds Number (or Fluid Reynolds

Number) as is conventional when the presence of magnetic fields is relevant for the dynamics (see

section 2.4). We will continue with the analysis of the mean magnetic field amplification in the

different probes: the internal probes and the Hall array (see section 5.1). The former gives a close

look into the internal topology of the magnetic fields in the flow. It will, in particular, indicate the

presence or not of a radial magnetic field, whose importance for the dynamo mechanism we have

stated in section 2.3. For the Hall array probes we will use Gauss coefficients decomposition (see

section 2.3.2) and use it to also infer about the internal dynamics of the flow and magnetic field.

Finally, we perform time dependent analysis of both Hall array and internal probes’ time traces

of the amplified magnetic field, and compare them with the expected results from the literature.

These studies include, for example, spectrum analysis and probability distribution as a function

of Reynolds and Rossby numbers.

5.2.1 Torque Scaling

5.2.1.1 Reynolds number dependence

The torque dependence on the Reynolds number for a stationary outer sphere and for the

3 inner sphere modes (smooth, scoop and wedge) is shown in Figure 5.2. In the same way we

did for the 40-cm experiment, this curve will be used to normalize the torque for the runs with

changing Rossby number since the total hydrodynamic torque factorizes as
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Figure 5.2: Dimensionless torque from the inner motor versus Reynolds number with stationary
outer sphere (Ro = ∞) for all baffle designs in the 3-m experiment. A power law of the form
G∞ = bRea + c was fitted to each data set. Values a, b and c are listed in Table 5.1
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Table 5.1: Power law fit of the form G∞ = bRea+c of the plots in Figure 3.7 and Taylor-Couette
flows in [1].

Experiment a b c
3-m Smooth (Γ = 0.35)[4] 1.83 0.009 2.3× 1010

3-m Scoop 1.85 0.042 1.3× 1011

3- Wedge 1.84 0.053 8.4× 1010

G(Ro,Re) = f(Ro)G∞(Re), (5.1)

as reported by Paoletti and Lathrop [1], Zimmerman et al. [4], Dubrulle et al. [82].

The first we notice is the clear increment in the torque generated by the motor for the same

Reynolds number. This difference increases slightly as we increase the Reynolds number from

4.2 at the smallest Reynolds number, to 5.2 times more, approximately at the maximum Reynolds

number. In fact, the slope of this curve saturates to its final value faster for a rough inner sphere.

For the runs with baffles on the inner sphere the motors reached their torque limit, sometimes they

even overheated and shut down. This means that with the baffles installed we are able to put all

the torque capacity of the inner motor into the flow and magnetic field generation, something that

never happened with the smooth inner sphere where the only limitations for spinning the inner

sphere were the resonance mode of the cube and the frame that hold the motors. If we compared

the extrapolation to higher Reynolds numbers done for the water experiment in Figure 3.7, we

were expecting a net dimensionless torque of G∞ 1013 for a Re ∼ 3× 107 which is less than 1%

difference from the real value that we measured of G∞ = 7× 1012.

In table 5.1 we can see the results of a power law fit of the form G∞ = bRea + c to

the dimensionless torque as a function of the Reynolds number. The main differences are in

the coefficient b and c, being both higher with baffles than without them. The coefficient c is
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a measure of the torque at low Reynolds numbers when the inner sphere rotates slowly, hence

we would expect that its main contribution is due to the seals and bearings friction. The baffles

clearly increase torque on the inner sphere, even at slow rotation rates. It is important to mention

that the current set of motors is not intended to operate at frequencies below 1 Hz, and the baffles

have a significant effect on torque at those frequencies. Figure 5.2 shows that the curve for

smooth inner sphere converges to a constant value as Re → 0 whereas the same is less clear for

the rough inner sphere cases.

The coefficient b is a geometry-dependent factor. In Taylor-Couette flows, it is expected

to grow as we reduce the gap between the cylinders [1, 4, 82]. More specifically, in Taylor-

Couette, this prefactor is expected to be inversely dependent on the critical Reynolds number

for self-sustained turbulence (see Dubrulle and Hersant [32]). In fact, for Taylor-Couette in the

subcritical regime with fully developed turbulence,

G ∼ γsubRe2,

where

γsub = δ/Rg ,

being Rg the critical Reynolds number for self-sustained turbulence and δ a factor that depends

entirely on the gap between cylinders.

Because of the dynamical similarities between the Spherical and Taylor-Couette flows we

can expect these relations to hold to a certain extent, which is the case shown in Table 5.1.

Both prefactors b for baffles added to the inner sphere are higher than with the smooth boundary
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Table 5.2: Location and amplitude of the maxima in Figure 5.3
Experiment G/G∞ Ro−1

3-m Smooth [4] 1.20 -0.05
3-m Alpha scoop 5% 2.19 -0.21
3-m Alpha wedge 5% 2.06 -0.21

case, which indicates that we are effectively reducing the gap. Additionally, as mentioned in the

literature [10, 62, 63, 78], the presence of the baffles changes the nature of the boundary layer to

a pressure-dominated one, having additional effects on the angular momentum transfer; hence,

in the torque.

The coefficient a for the rough boundary case is surprisingly similar to the smooth boundary.

Although it is greater for both baffle modes, from the 40-cm water experiment and from Taylor-

Couette (see [31, table I]) we expected this value to be much closer to 2. This might indicate that

the flows are actually not significantly more turbulent than the smooth case, presumably due to

the fact that the inner motor is incapable of reaching the same rotations rates as with the smooth

sphere.

5.2.1.2 Rossby number dependence

For the Rossby number dependence we can see Figure 5.3, where we have also plotted the

3-m smooth case for comparison, in the same way we did for the water experiment (see Figure

3.8). Additionally, we can see the list of the location and amplitude of the maximum torque peak

in Table 5.2. The first we notice is a clear increment on the normalized dimensionless torque

with baffles, although only for negative Rossby numbers. Let us talk about the region Ro−1 < 0

where the maximum torque peak is located. When compared with Figure 3.8 we can see that

the amplitudes of the torque at the maximum torque peak are only approximately 10% lower
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Figure 5.3: Rossby number dependence of the measured inner sphere torque. The magnitude of
the torque at a given Ro and Re is normalized by G∞(Re), the torque expected at that Reynolds
number if the outer sphere were not rotating. The dashed line indicates the location of the peak
for maximum relative dimensionless torque for smooth and rough inner sphere.
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than what we expected from the water experiment, with scoop torque being higher than wedge at

the peak. Additionally, the location of the torque peak moved to more negative inverse Rossby

numbers as expected as well. What this actually implies is that we have increased the effect that

the inner sphere has on controlling the dynamics of the system, and the rotation rate of the inner

sphere required for a state to happen is now lowered, shifting everything to higher inverse Rossby

numbers in absolute value.

Even though the location of the maximum torque peak shifted, it moved to a higher Rossby

number than we were expecting. From the 40-cm experiment, the location for 5% height alpha

baffles was around Ro−1 ∼ −0.15 and for the 3-m experiment we obtained a location of the peak

closer to −0.21± 0.01 independently of the mode (scoop or wedge). This change in the location

of the peak to more negative inverse Rossby numbers is the equivalent of having taller baffles on

the sphere, as seen in Figure 3.8 and 3.2. This was certainly unexpected given the good agreement

for the torque as function of Reynolds number discussed in the previous section. One possibility

could be that the baffles thickness (as opposed to height) was not the same ratio as tested in

the water experiment. For engineering purposes of the baffles construction, the thickness of the

baffles was set to half of their height, whereas in the water experiment where this ratio was one

to one. This might have had an effect on the generation on the flow separation at the baffles [62].

Another possibility is that the viscosity takes a more important role now that we have changed the

coupling in the boundary layer and the difference of the 30% between the viscosity of the water

and liquid sodium has a more significant effect in the generation of this new pressure-dominated

boundary layer. A more detailed analysis of this difference is out of the scope of the present

dissertation; however, it is left as a possible research topic for which the 40-cm experimental

setup could be used in the near future.
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Figure 5.4: Possible bistability regime for rough inner sphere in the 3-m experiment. Time
series in outer sphere rotation units of the dimensionless normalized torque (top) and azimuthal
magnetic field induced (bottom) for Ro−1 = 0.49. A running average of 10 seconds has
been applied to remove the high frequency oscillations. Compare with Zimmerman et al. [4,
Figure 10].
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For the region where Ro−1 > 0 we observed also a similarity with the 40-cm experiment.

The torque is lower than the smooth case for increasing Rossby number until bistability takes

place. However, there does not seem to be a region where the torque jumps to some higher

torque state like with a smooth inner sphere [46]. This could mean that we have not yet reached

the High Torque State region observed and explored by Zimmerman et al. [4, 46] where the

normalized torque reaches values higher than the torque peak around negative Rossby numbers.

When compared to the 40-cm experiment we see that the jump to high torque state (H) happens

at values higher than Ro−1 ∼ 0.8 which we have only partially studied. However, we did observe

some instability in the torque time traces that start taking place for Ro−1 > 0.5 as we can see

in Figure 5.4. The behavior of these time traces is similar to the ones reported by Zimmerman

et al. [46]: an increase in the torque accompanied by a decrease in the azimuthal magnetic field.

However, the torque fluctuations are only of 10% of G∞, compared with the smooth case where

the fluctuations are between 50− 100% of G∞. The correlation between torque fluctuations and

magnetic field fluctuation, and the bursting dynamic, might be a strong indication that we are in

the onset of a dynamo generation as reported in [86, 87].

We have yet to explore regions where the bistability may be stronger, presumably for

Ro−1 > 1 given the results in the 40-cm experiment. However, we might need to evaluate the fact

that the baffles have a significant effect on the bistability regime. According to Zimmerman et al.

[46], this regime is linked to the appearance of a strong shear along the inner tangent cylinder.

By adding baffles, we not only strengthened the equatorial jet, but made it present for most of the

rotation rate regimes. An equatorial jet for the strong corotation regime, that would not be there

with a smooth inner sphere, would destroy the inner tangent cylinder, preventing the bistability

regime to take place.
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Figure 5.5: Compensated plots of the dimensionless torque as a function of Reynolds number for
different Rossby numbers, for smooth (left) and rough (right) inner sphere in the 3-m experiment.
Dashed lines are taken in the absence of an external magnetic field, solid lines are taken with an
external dipolar field of Bext ∼ 20 G. Runs for scoop mode are indicated with ”▽” and for
wedge mode with ”△”. The torque for stationary outer sphere for both cases scales close to
G∞ ∼ Re1.85 which implies that the curves in this plot with a power law less than one (curving
downward like the cases for Ro−1 < 0) implies a torque higher than G∞.

In section 5.2.1.1 we considered runs in the parameter space where the Reynolds number

was changing while the inverse Rossby number was kept constant at a value of zero; meaning,

the outer sphere was stationary. These runs, where the only parameter we change is the Reynolds

number, are called Reynolds ramps. Respectively with the rest of parameters (Rossby ramps and

magnetic ramps). Let us now study a few sets of Reynolds ramps but with a different Rossby

number.

In the Taylor-Couette experiments [1, 82] it is well-known that the Reynolds number

dependence on the dimensionless torque is the same independently of the Rossby number (see

equation 5.1). Something similar was obtained previously for Spherical Couette flows [4]. In

Figure 5.5 we plotted the normalized dimensionless torque for five Reynolds ramps with different

Rossby numbers and for both configurations of smooth and rough inner sphere. The normalized
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Table 5.3: Power law fit of the form G∞ = bRea + c of the plots in Figures 3.7 and 5.5
Experiment Ro−1 a b c
3-m Smooth 0 1.83 0.009 2.3× 1010

3-m Smooth -0.05 1.84 0.008 3.2× 1010

3-m Scoop 0 1.85 0.042 1.3× 1011

3-m Scoop -0.21 1.89 0.041 3.1× 1010

3-m Wedge 0 1.84 0.053 8.4× 1010

3-m Wedge -0.21 1.87 0.067 3.4× 1010

3-m Wedge 0.35 1.85 0.022 8.6× 1010

dimensionless torque is just a compensated plot of the form G/(bRea + c) where a, b and c are

given for every inner sphere configuration by the values on the table 5.1. For the smooth boundary

case, for a Rossby number near to the maximum torque regime and with a applied magnetic field,

we can see a curve that converges in a few steps to G/G∞ = 1.2 which is the corresponding

value for that particular Rossby number as indicated in Table 5.2. For the rough boundary case

however, the curve with Ro−1 = −0.21 (around the maximum torque regime) converge slowly

compared to the smooth case. For the rough case we have also plotted another Reynolds ramps

for a positive Rossby number near the minimum torque peak, in the corotation regime (see red

curve on Figure 5.5). This curve is almost constant as a function of Reynolds number as we

would expect if the power law was the same regardless of the Rossby number. A compensated

plot (G/G∞) curving downwards like the one for Ro−1 = −0.21 implies that the non normalized

torque (G) has an exponent higher than the exponent of G∞.

As we can see in Table 5.3, we have extended Table 5.1 by adding the coefficients of

a power law fit of the dimensionless torque for the Reynolds ramps taken at Rossby number

different than zero, some of them plotted in Figure 5.5. The two runs at maximum torque regime

for rough inner sphere are the ones with a higher exponent a indicating that turbulence is probably

more fully developed for this configuration. Remember that the Kolmogorov turbulence scales
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as Re2 and it has been shown for Taylor Couette flows [31, 62] that baffles make this transition

to ultimate turbulence regime faster, facilitating the transport of angular momentum across the

boundary layer.

Another possibility for this increment in the exponents a at the maximum torque regime

for rough inner sphere is that in this region we are also obtaining a significant amplification of

the magnetic field, as we will see in the next section, and that increment is directly due to the

fact that there is more energy demand due to the generation of the magnetic field. The increment

in the torque demands before and after the onset are one of the indications of a possible dynamo

generation, as reported by Monchaux et al. [75] and Gailitis et al. [16].

5.2.2 Mean Field Amplification

We will now discuss the magnetic measurement by the 35 Hall probes, including the two

new ones that we installed during the remodeling stage. In this section in particular we will focus

on the time average of the magnetic probes for different sets of parameters. Like with torque data,

we will divide the section in Reynolds and Rossby numbers dependence and additionally we will

add a subsection about the dependence of the dynamics on the externally applied magnetic field.

We will divide our magnetic measurements in two types: internal measurements given by the four

probes submerged in sodium; and external measurements, given by the 31 external Hall probes

distributed around the outside of the outer sphere. We will use these 31 signals to generate the

spherical harmonics decomposition in the form of Gauss coefficients, as explained in Section

2.3.2 and using Equation 2.27. In the case of modes with m ̸= 0 we will add the ±m modes

in quadrature: Bm
l =

√
(B+m

l )2 + (B−m
l )2. We will mostly show results taken on the negative
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Rossby number region, particularly around the maximum torque regime, since it is in this region

where the highest amplification of the magnetic field was found. We will address results on the

corotation regime or with the stationary outer sphere when it is relevant for the discussion.

The process of debiasing the magnetic field signal was critical for the accuracy of the

results. First, we performed a calibration curve for the magnetic field in the Hall probes as a

function of the current in the coils of the electromagnets that generated the external magnetic

field: with the experiment cold, and solid sodium inside, the outer sphere was set to rotate at

around 0.1 Hz. Then, a ramp in the external field was applied in steps of 20 Amps in the coils, for

10 revolutions of the outer per step in the magnetic field. This curve measures the contribution

of the external magnets in every magnetic probe without the effect of the liquid sodium. Second;

before every run and with the sodium molten, the experiment was set to rotate in solid body

configuration (the outer and the inner sphere rotating at the same frequency). Magnetic data

was acquired for around 10 revolutions of the outer sphere with the external magnetic field

off. This will give the base level of every Hall probe which depends on its temperature and

ambient magnetic field which fluctuates daily. Finally, after the desired runs were performed, to

debias the data we subtracted the base level voltage in the probes taken right before the run (or

sometimes after the run) with no magnetic field applied, and the respective value of the magnetic

field contribution of the coils. In this way, the remaining value of the magnetic field will only be

the contribution of the magnetic field generated by the advection of the liquid sodium only.

In the next section we will show preliminary results without an externally applied magnetic

field as a function of Reynolds and Rossby number for the internal and external probes. This

will allow us to study the generation and amplification of the ambient magnetic field: the Earth’s

and the laboratory field which is inherent to the building. After this study, we will present results
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Figure 5.6: Magnetic field amplification with stationary outer sphere ( Ro−1 = 0) as a function
of the magnetic Reynolds number for one pair of Hall probes in Port B of the experiment (see
Section 5.1) in the cylindrical radial direction (Br) and in the azimuthal direction (Bϕ) for the
two types of boundaries and their respective modes (scoop[<] and wedge[>]). During this run,
there is no externally applied magnetic field from the coils.

with a weekly imposed magnetic field to fix the topology of the external fields, particularly in the

dipole configuration. Within each section we will try to separate the discussion in the internal

and external field as a function of Rossby and Reynolds number as the controlling parameters for

this experiment.

5.2.2.1 No applied magnetic field

As the first exploratory measurements in our new rough boundary experiment, we performed

runs with stationary outer sphere and increased the inner sphere angular frequency in both directions

(so, both modes: scoop and wedge). For these initial sets of runs we did not apply an external

magnetic field. In Figure 5.11 we can see the magnetic amplification for the finger probes in

both the azimuthal and cylindrical radial direction of the experiment with no externally applied

magnetic field and with stationary outer sphere as a function of the magnetic Reynolds number.

The three cases are up for comparison: smooth inner sphere and both modes of rough inner
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Figure 5.7: Magnetic field amplification in the external Hall probes array, express in spherical
Harmonics decomposition (dimensional Gauss coefficients) with stationary outer sphere (
Ro−1 = 0) as a function of the magnetic Reynolds number for the two types of boundaries
and their respective modes (scoop[<] and wedge[>]). During this run, there is no externally
applied magnetic field from the coils.

sphere (scoop and wedge). The additional probes that we installed are shown in black. The

main observation of these plots is the increase of the amplified field for the rough inner sphere

as a function of magnetic Reynolds number . Especially for low magnetic Reynolds number

the amplification is significant compared to the smooth case. The azimuthal magnetic field is

the one that shows the highest amplification, and changes sign in the presence of baffles as we

will discuss in more detail in the section 5.2.2.2. The radial component of the internal magnetic

field has also increased, although for the wedge case it seems to have a similar magnitude as the

smooth case.

In Figure 5.7 we can see the Gauss decomposition of the magnetic field in the Hall probe

array of the same runs in Figure 5.6. We can see a dominant B0
3 mode through all the regimes

as well as an B1
1 and B1

3 . The presence of the m = 1 modes could indicate the presence of a

possible equatorial rotating dipole which is the most common expected configuration as reported

in numerical simulation like the one from Gubbins et al. [9] and Nornberg et al. [74]. The fact

that we have stronger fields in the external array than in the smooth case could point towards an
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increase of the flux expulsion as proposed by Moffatt [51] due to closed streamlines of flow now

thanks to the baffles. It is also interesting to notice that the dipole field is growing with a negative

value with respect to most of the other modes. Also, the change in sign for some of the even

modes, like B0
2 for scoop versus wedge modes. It is hard to determine the existence of a dynamo

just by these plots. Ideally we would expect a significant amplification of the external fields,

although there is no well-known estimation of the intensity that we should be expecting for these

Reynolds numbers. Our only reference of experimental dynamos achieved in the laboratories

[42, 88] suggest values of the order of tens of Gauss, although for very different geometries.

Another possible evidence of the presence of a dynamo is the presence of a threshold for the

amplification of the fields as reported in the VKS and Riga experiments [42, 88]. However, there

is no clear threshold for the field reported here, unless it is hidden at lower magnetic Reynolds

number than the ones that we reached in these runs. There is neither a clear geometry, like a

strong dipole or quadrupole, which are the most possible dynamo configurations. The presence

of strong m = 1 modes is promising but not conclusive enough. The B0
3 mode suggest the

presence of a l = 2 fluid mode, as will be more clear in the next section, which seems to be

positive for a dynamo action in this geometry as reported by Bullard and Gellman [49].

The next exploratory runs that we performed were in the counter-rotation regime with no

applied field. These runs were performed as a first swipe to locate the maximum torque peak,

which we found to be around Ro−1 ∼ −0.21 for either scoop or wedge mode. The torque

measurements for these runs are also reported in Figure 3.8. In Figure 5.8 we can see the two

internal probes for both modes of the rough inner sphere. For this parameter space we did not

have a similar run for the smooth case with no applied field, but we did find a set of runs where we

turned off the magnetic field while changing parameters. We used those values to get the average
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Figure 5.8: Magnetic field amplification for counter-rotating spheres (Ro−1 < 0) around the
maximum torque regime for one pair of Hall probes in Port B of the experiment (see Section
5.1) in the cylindrical radial direction (Br) and in the azimuthal direction (Bϕ) for the two types
of boundaries and their respective modes (scoop[<] and wedge[>]) for constant Rm ∼ 220.
Horizontal dashed line indicates the maximum gain reported in the smooth case in the internal
probes (azimuthal [-.] and radial [–]) around the same Rossby number for comparison.

amplification with the smooth inner sphere at the maximum torque regime ( Ro−1 ∼ −0.055 for

smooth) that are shown in the plots as dashed lines. The location of the peak, and the amplification

at that particular point in the parameter space for both azimuthal and radial field is evident.

Although, the radial field for scoop is not as strong as it is for wedge mode. The direction of

the amplification is consistent with Figure 5.6 and for the peak, the amplified field surpasses the

values of the smooth inner sphere for all except the radial direction in the scoop mode.

In Figure 5.9 we can see the external Hall probe array results for the runs in Figure 5.8. Two

modes are dominant: the B0
3 and the axial dipole mode B0

1 . Both peak for the maximum torque.

The B0
3 mode is flatter for inverse Rossby numbers to the right of the peak (more negative Rossby

numbers), the dipole mode however is sharp just around that peak and decreases for values on

the sides of the peak. It is also inverse with respect to the B0
3 mode similar to the stationary outer

sphere. The amplification is significantly greater than for the smooth case; however, these values

are still below 1 Gauss which is close to the inherent fluctuation associated with the building.
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Figure 5.9: Magnetic field amplification in the external Hall probes array, express in spherical
Harmonics decomposition (dimensional Gauss coefficients) with counter-rotating spheres (
Ro−1 < 0) as a function of the magnetic Reynolds number for the two types of boundaries
and their respective modes (scoop[<] and wedge[>]). The horizontal dashed line indicates the
maximum gain reported in the smooth case in the external probes. During these runs, there is no
externally applied magnetic field from the coils.

During the bias measurements, where we performed solid body rotations (inner and outer at the

same rotation frequency), the fluctuating ambient magnetic fields oscillate between 0.5 G in the

probes near the equator and almost 2 G for probes on the poles. This ambient magnetic field

is expected to be greater at the poles, especially the north pole, since this is where most of the

electronics equipment is located. The Figure 5.10 shows a timeline of the voltage in some of

the probes at different latitudes for solid body rotation without applied external magnetic fields.

The sensitivity of the probes is 31 mV per Gauss, so oscillations of 0.1 V are equivalent to a

couple of Gauss which is already in the same order of magnitude of the amplification that we are

measuring.

There are two possible solutions to overcome this difficulty. One is to somehow cancel, or

reduce, the ambient (mostly the building’s) magnetic field. At the time this section was written,

this was a work in progress by one of our most recent graduate students Elaine Jaross and Shiyi
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Figure 5.10: Timeline of the voltage in some of the experiment probes in seconds since midnight
(ssm). HLS: High Latitude South. HLN: High Latitude North. MLS: Mid Latitude South. MLS:
Mid Latitude South. EQ: Equator. Brad: Internal Probe in the radial direction. Bphi: Internal
Probe in the azimuthal direction. This run takes place for solid body rotation at 0.1 Hz and with
no applied external magnetic field.

Wang. Additionally, we could run the experiment with an applied external field, which was

already in the goals of this dissertation. This will allow us to interpret the new amplified fields

with the, well-known, geometry of the field that we are applying (either dipole or quadrupole)

to infer properties of the fluid states inside the experiment. These results can be compared with

the 40-cm experiment results of the previous section, especially in the maximum torque region

where we were able to measure meridional velocity profiles.

5.2.2.2 Applied magnetic field

In the next section we will present the results of the mean magnetic fields of the internal and

external probes as a function of Rossby number first and then as a function of magnetic Reynolds

number for a constant magnetic field applied of 20 G in the center of the experiment in a dipole

configuration. We will focus the Rossby number dependence in regions with negative Rossby

numbers around the peak torque.
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Figure 5.11: Magnetic field amplification around the maximum torque regime as a function of
the Rossby number for one pair of Hall probes in Port B of the experiment (see Section 5.1)
in the cylindrical radial direction (Br) and in the azimuthal direction (Bϕ) for the two types of
boundaries and their respective modes (scoop[<] and wedge[>]) for different sets of Reynolds
numbers. The maximum torque regime is indicated with a dashed vertical line for each boundary
type. A constant external dipolar magnetic field of 20 G in the center of the experiment was
present during all the runs.

In Figure 5.11 we can see the magnetic amplification for the finger probes in both the

azimuthal and cylindrical radial direction of the experiment. A magnetic field of 20 G in the

center of the experiment is applied for all the runs. For the smooth case we can see that the

induced magnetic field reaches a local maximum near the maximum torque peak (indicated with a

vertical dashed line) regardless of the Reynolds number. As observed by Zimmerman et al. [4] the

maximum radial field is offset from the maximum azimuthal field. The former one being centered

with the maximum torque peak. This same result was observed for the 40-cm water experiment

and reported in [78], where the minimum for the azimuthal velocity in the equatorial plane was

offset from the torque peak. The fact that this minimum of azimuthal speed near the equator

coincides with a maximum in the azimuthal field generation is an evidence of the importance

of the shear: the geostrophic constraints due to rotation vanish, which allows a more efficient
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transport of angular momentum in the radial direction [89]. In other words, the global rotation in

the experiment vanishes at this point, as the drag forces due to each boundary equate each other

in the opposite direction, hence maximizing the torque in the inner motor. This cancellation of

the global rotation comes with a broader shear region in between the spheres which maximizes

the azimuthal amplification of the magnetic field.

For the rough boundary case we notice a significant increment of the induced field with

respect to the smooth boundary case even with a much lower Reynolds number. This is a clear

indication of the effectiveness of the baffles in transferring angular momentum and coupling the

inner boundary with the fluid. The amplification takes place for both internal directions measured.

It is stronger in the azimuthal direction for the scoop mode (<) than for the wedge mode (>) for

Ro−1 < −0.21, whereas the radial field appears stronger for the wedge mode.

The direction of the amplified field changes with the rotation direction of the outer: for

smooth and scoop mode the outer sphere has a positive angular velocity (right-hand rule) but

the direction of the amplified field changes. For wedge mode in the negative Rossby region, the

outer sphere was rotated in the negative direction, that is why the azimuthal field changes sign

with respect to the scoop case. Remember that the probes are fixed with the outer sphere. With a

smooth inner sphere the direction of the amplified internal azimuthal field is in opposite direction

of the inner sphere’s tangential velocity. With baffles, the amplified internal azimuthal field is in

the direction of the inner sphere’s tangential velocity. This change of direction of the amplified

field in the azimuthal direction is intriguing and not well understood yet. Verschoof et al. [63]

showed that for rough Taylor Couette flows, the contribution to the torque due to skin friction

(shear) near the wall decreased with roughness. This highlights the role of the pressure drag

with rough boundaries as mentioned before. The presence of rough elements might then have a
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significant impact on the shear forces in the bulk of the fluid (away from the boundaries) which

is the origin of the omega effect, a.k.a., the stretching of the magnetic field lines in the azimuthal

direction.

The radial field also changes sign, not as a function of the rotation direction of the sphere but

as a function of the roughness: with baffles, the amplified radial field is negative (inward, towards

the axis of rotation) whereas for smooth boundary it is positive. If we look at Figure 3.11 for the

40-cm experiment, we can notice that the radial velocity field near the pole of the experiment

(which is where these probes are located) changes sign for smooth versus rough spheres. More

precisely, for no baffles there is a positive radial velocity field at the poles whilst for the alpha

baffles is strongly negative, which is a sign of a strong recirculation. This is therefore consistent

with the observed induction effect in the finger probes.

We will stress once more the importance of these results: for a Reynolds number of almost 4

times less than the maximum achieved without baffles, we are increasing by 100% the magnitude

of the internal magnetic fields generated in the experiment near the maximum torque peak region.

In Figure 5.12 we can see the main spherical harmonics contributions to the total external

field measured by the Hall probe array for the same runs as in Figure 5.11. This magnetic field is

in the spherical radial direction of the experiment and plotted as a function of the inverse Rossby

number. The most relevant feature of this plot is the dominance of the B0
3 mode over almost

the entire spam of these runs. This mode is particularly dominant at the max torque peak for the

scoop mode where it reaches a value of 20 G, which is equivalent to the externally applied field in

the center of the experiment. Notice that at this point, all the other magnetic field modes decrease

their intensity as well. For the rough boundary in the wedge mode, the B0
3 mode is still dominant

but all the other modes are more intense compared to the scoop and smooth mode.
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Figure 5.12: Magnetic field amplification around the maximum torque regime as a function of
the Rossby number for the 31 Hall probes array in the spherical radial direction (see Section
5.1) in the form Bm

l = l(l + 1)gml (where gmj are the Gauss coefficients of the spherical
harmonics decomposition) for the two types of boundaries and their respective modes (scoop[<]
and wedge[>]) for a constant Reynolds number: Rm = 950 for smooth, Rm = 220 for rough
boundary. These Rossby ramps are taken around the maximum torque regime indicated with a
dashed vertical line for each boundary type. A constant external dipolar magnetic field of 20 G
in the center of the experiment was present during all the runs.

We can use the results in Chapter 3 to better interpret this data. In Figure 3.11 and in Figure

3.9 we can see that the maximum torque regime is characterized by an equatorial jet stretching all

the way to the outer boundary and recirculating towards the poles. This jet has different properties

depending on the mode. In particular for the scoop mode it is more intense than the other cases,

but narrower. This type of flow topology has order l = 2 and let us consider the axisymmetric

case where the azimuthal wavenumber m = 0 ( Sm=0
l=2 ). The externally applied magnetic field

is dipolar, so its main component is of the form Sm=0
l=1 . Using the Bullard and Gellman [49]

notation, the interaction between an l = 2 poloidal velocity field with a l = 1 poloidal magnetic

field produces a l = 3 magnetic field:

(B0
1 , S

0
2 , B

0
3),
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Figure 5.13: Hammer-Aitoff projection of the spherical radial magnetic field measured by the
31 Hall probe array for the Rough Scoop mode in Figure 5.11 (center) for three parameter space
points: (a) Ro−1 = −0.22; (b) Ro−1 = −0.21, at the torque peak and (c) Ro−1 = −0.20.

which satisfies the selection rules.

In Figure 5.13 we can see a Hammer-Aitoff projection of all the spherical harmonic modes

(not only the ones in Figure 5.12) of the magnetic field for the scoop mode of Figure 5.12. As

in previous plots, we have subtracted the external magnetic field contributions. The center graph

corresponds to the maximum torque peak at Ro−1 = −0.21. The other two correspond to Ro−1

to both sides of this peak. We can see the l = 3 mode very clearly for (b) which also has the

highest amplitude. The field for (c) is weaker but still has a visible l = 3 topology with more

oscillatory behavior and less axial symmetry than (b), and for the plot (a) we have lost most of

the l = 3 topology. This figure serves as a validation of the results in Figure 5.12.

In Figure 5.14 we can see the magnetic amplification for the finger probes in both the

azimuthal and cylindrical radial direction of the experiment as a function of the magnetic Reynolds

number for the Rossby number of the maximum torque regime. A magnetic field of 20 G in the

center of the experiment is applied for all of the runs in this figure.

In the search of a dynamo, the magnetic Reynolds number dependence is crucial. The

previous successful dynamo experiments showed a clear threshold for the dynamo action, with a

change in the slope of magnetic energy density as a function of the magnetic Reynolds number

(See for instance [16, 42] and for a recent review of all the experimental approaches see [86]).
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Figure 5.14: Magnetic field amplification at the maximum torque regime (smooth Ro−1 = 0.055,
rough Ro−1 = 0.21) as a function of the magnetic Reynolds number for one pair of Hall probes
in Port B of the experiment (see Section 5.1) in the cylindrical radial direction (Br) and in the
azimuthal direction (Bϕ) for the two types of boundaries and their respective modes (scoop[<]
and wedge[>]). A constant external dipolar magnetic field of 20 G in the center of the experiment
was present during all the runs.

For the Smooth boundary case we can see that the amplitude of the amplified signal grows almost

linearly as a function of magnetic Reynolds number , with the radial component higher than the

azimuthal one. For this Rossby number the amplitude in the radial component is the highest

among all the parameter space, which we know is necessary for the dynamo action. However, we

do not see a clear bifurcation for this plot.

For the rough boundary we see intensities and directions of the amplification that are

consistent with those of Figure 5.11. Both modes have azimuthal amplification of a similar

order but in opposite directions as expected. The radial field is negative towards the axis of the

experiment, contrary to the smooth case. We want to stress the fact that the maximum Reynolds

number for the rough boundary case is Rm = 220 which is almost four times lower than the

smooth case Rm = 950, however the amplifications observed are of the order of 18 G which is

more than double of the 8 G observed for the smooth case. We can compare these results with
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Figure 5.15: Magnetic field amplification at the maximum torque regime as a function of the
magnetic Reynolds number for the 31 Hall probes array in the spherical radial direction (see
Section 5.1) in the form Bm

l = l(l + 1)gml (where gmj are the Gauss coefficients of the spherical
harmonics decomposition) for the two types of boundaries and their respective modes (scoop[<]
and wedge[>]). A constant external dipolar magnetic field of 20 G in the center of the experiment
was present during all the runs.

the Madison Dynamo Experiment [74] where the maximum value measured in the axisymmetric

modes was around 20 G for a 50 G transverse field applied. In our new experiment, we are getting

modes of the same order as the applied field. Despite the significant increment in the intensity

of the induced field, we do not see a clear change in the slope of the curves that could indicate a

transition to dynamo action. At least in this range of parameters. We believe that three scenarios

are possible: (1) the transition to dynamo is at higher magnetic Reynolds number than the one

that our motors can provide; (2) the transition to dynamo takes place at a much lower Rm that

we are not sampling with enough precision, for the Riga ([88] and the VKS2 ([42]) experiments,

the threshold for dynamo was between 30 to 40 magnetic Reynolds number ; (3) the applied

magnetic field is affecting the criticality of the dynamo transition and maybe acting against the

dynamo generation. We have performed a few runs to test this hypothesis that we will discuss at

the end of this section.

In Figure 5.15 we can see the Gauss decomposition of the magnetic field in the Hall
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Figure 5.16: Hammer-Aitoff projection of the spherical radial magnetic field measured by the
31 Hall probe array for the Rough wedge mode in Figure 5.11 (right) for three parameter space
points: (a) Rm = 50; (b) Rm = 120 and (c) Rm = 220.

probe array of the same runs in Figure 5.14 for the maximum torque regime. The properties

are similar to the ones studied for the Rossby number dependence. We can see a dominant B0
3

mode through all the regimes. This mode is more intense for the scoop configuration. We observe

more intense magnetic modes other than B0
3 for the wedge configuration which is consistent with

the Rossby ramps in Figure 5.12. Snapshots of the Hammer-Aitoff projection of all the spherical

harmonic modes for the wedge configuration can be observed in Figure 5.16, where we can see

the formation of the dominant B0
3 mode and its clear dependence on the Reynolds number.

If we compare Figure 5.16 (c) with Figure 5.13 (b) we can see that the region of negative

magnetic field below the equator in Figure 5.16 (c) is wider than the one in Figure 5.13 (b). These

two plots correspond to the same parameter space but one is in the scoop mode and the other one

in the wedge mode. This difference is due to the presence of spherical harmonic modes with

even order l like B0
2 and B0

4 for the wedge mode that cause this asymmetry across the equatorial

plane. It can be pictured as if the even modes are pushing the B0
3 mode out of the equator. Even

though these are snapshots for a particular time, the same behavior was observed throughout the

run. This is an evidence of the difference in the topology generated by this asymmetric baffles

configuration as predicted by the 40-cm water experiment [78].

To finish this section we can evaluate the magnetic field amplification, not as a function of
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dimensionless groups like Re or Ro, but instead as a function of more ”practical” units that could

be better used to analyze the engineering aspects of the experiment. Let us take a look at the

amplified external and internal fields but as a function of the kilowatts supplied by the motors.

We understand that in general the power is proportional to the cube of the Reynolds number:

P ∼ Re3. We also know that in a stationary state, there is a balance between the torque in both

motors (inner and outer) so the total power in the flow is:

Ptot = Pinn + Pout

= Ωi ⟨τi⟩+ Ωo ⟨τo⟩ .

But if the torques are in balance, then ⟨τi⟩ = −⟨τo⟩ and so we have

Ptot = Ωi ⟨τi⟩ − Ωo ⟨τi⟩

= ⟨τi⟩ (Ωi − Ωo)

= ⟨τi⟩ΩoRo.

In Figure 5.17 you can see the magnetic fields both internally and externally amplified.

The internally generated was chosen to be the probe in the cylindrical radial direction, and the

externally generated is the amplitude of the strongest mode observed during the run, in this case

B0
3 . The rough inner sphere runs are limited by the torque in the inner motor, so that value

observed is the highest power that the motor can supply for that particular Rossby Number.

This value is 4 times smaller than the corresponding power for the smooth case. However, the

amplitude of the fields is almost two times higher. This is evidence of the effect that the baffles
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Figure 5.17: Magnetic field generation at the experiment probes as a function of the balanced
power in the inner motor in kilowatts at the maximum torque state for a 20 G externally applied
magnetic field. The power limit in each motor is 260kW at 1800 rpm. The absolute upper bound
on the mechanical power input of the 3-m experiment is 320 kW based on the motor torque and
the allowable boundary speed [14].

have in conveying the energy into flows that are capable of amplifying the fields more effectively.

5.2.3 Time-dependent dynamics

We will now proceed to analyze the time dependent dynamics of the amplified fields. This

can help provide an insight on the nature of the amplification generated by the flow. We will

focus on the comparison with and without baffles, as this is the novel contribution of the present

doctoral dissertation, as we did for the main field amplifications. However, whenever the author

considers it interesting for the sake of the discussion, we will drift towards other comparison

parameters, like Rossby number or applied magnetic field.

5.2.3.1 Power Spectra

We will start the discussion in this section with the power spectral decomposition, and we

will focus our attention on the internal probes. These, being in (almost) direct contact with the
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Figure 5.18: Power Spectrum of the internal probe magnetic field signal in the cylindrical radial
direction (Br) at the maximum torque regime (smooth Ro−1 = 0.055, rough Ro−1 = 0.21) as a
function of the magnetic Reynolds number for the two types of boundaries and their respective
modes (scoop[<] and wedge[>]). Dashed lines indicate power laws for comparison. The
frequencies are normalized by the outer sphere angular frequency and shifted one decade away
with each different Reynolds number. A constant external dipolar magnetic field of 20 G in the
center of the experiment was present during all the runs.

sodium, give rise to the richest dynamics because they can depict smaller scales than the probes

located on the outside. Let us start with the magnetic Reynolds number dependence for the same

runs as in Figures 5.14 and 5.15.

In Figure 5.18 we can see the Power Spectrum Decomposition of the internal probe magnetic

field signal in the cylindrical radial direction (Br) at the maximum torque regime as a function

of the magnetic Reynolds number for the two types of boundaries and their respective modes as

discussed previously. We can see that rough boundary modes show a higher amplitude than the

smooth case for most of the spectrum frequencies. The dissipative scale is not visible for either

of the experiments but the inertial range extends towards higher amplitudes with baffles, before

the electrical noise signal starts appearing in the graph (for ω/2π > 60Hz). For low magnetic

Reynolds numbers the curves are more similar to each other, indicating that the effect of the

pressure-dominated boundary layer is more relevant for higher magnetic Reynolds numbers as
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expected from [62, 63, 78]. We also observe some low frequency oscillations than get buried

for increasing magnetic Reynolds numbers, these frequencies are harmonics of the outer sphere

frequency as expected and observed previously [3, 4, 13, 44].

We now discuss the power law regimes for the different configurations. A power law of

f−11/3 is expected under the Taylor hypothesis [73, 90] which indicates that the turbulence is

develop enough that there is a correlation between the spatial and the temporal spectrum, meaning

that the power laws scale with same exponent. In other words, it says that the turbulent eddies are

frozen in space as they are advected past the sensor, in this case the magnetic probe. Additionally

we have to understand the -11/3 exponent. As explained in more details in section 2.3.5, for

k0 < k < kσ the magnetic field lines are advected by the Kolmogorov turbulence giving an

energy spectrum that scale in the same way as the kinematic spectrum: Em(k) ∝ k−5/3. However,

when kσ < k, this regime is called the resistive dissipation range, and the magnetic field lines are

additionally diffused to smaller scales due to magnetic diffusivity, adding and extra k−2 to the

power law, hence the magnetic energy spectrum: Em(k) ∝ k−11/3.

Going back to Figure 5.18, we notice a power law close to -11/3 for both smooth and

rough inner sphere boundaries. For the rough boundary in particular, we see a clearer transition

to a steeper slope for Rm > 44. For these magnetic Reynolds numbers all the curves seem to

converge to the same shape. According to Moffatt [73], we would expect a break in the spectrum,

or a so-called knee [74], that indicates the location of the dissipation scale kσ. We do not think

that we have the resolution of the data good enough to accurately locate this breaking in the

spectrum; however, this is not due to instrumentation but instead due to a shortage in the duration

of these runs in particular. Longer runs are advised for future graduate students to better resolve

the dissipation scale. Nevertheless, we could leave the discussion without providing an estimate
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Figure 5.19: Power Spectrum of the internal magnetic field probe signal in the cylindrical radial
direction (left) at the maximum torque regime versus the power spectrum of an external probe
located at the equator (right), for different baffle configurations. Dashed lines indicate power
laws for comparison. The frequencies are normalized by the outer sphere angular frequency.
A constant external dipolar magnetic field of 20 G in the center of the experiment was present
during all the runs.

for kσ.

In Figure 5.19, we can see the same plots as in Figure 5.18 but we have only plotted

the maximum Reynolds number run for smooth and rough scoop baffles for the internal probes

together for comparison, and additionally, for an external probe located at the equator. We notice

and stepper slope, indicating a power law with exponent greater than −11/3 due to the shielding

on the stainless steel vessel, as reported previously by Nornberg et al. [74], Kelley [91]. For the

internal probes, we can estimate a power law closer to f−1 instead of the f−5/3 shown in Figure

5.18 (center) for comparison. This exponent of −1 was reported as well in the VKS experiment

was interpreted as 1/f noise due to the presence of several characteristic time scales in the flow

[75]. However it was not observed in the Madison experiment [74]. We would like to advise

again longer runs for future experiments. Finally, from the spectrum of the internal probe, we

could propose an estimate of the dissipative resistive scale for every type of boundary. For the
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smooth case have ks
σ ∼ 3Ωo(m

−1) and for the rough boundary (scoop in this case) we have

kr
σ ∼ 6Ωo(m

−1). Multiplying by their respective outer sphere angular frequencies and using the

relationship k = 2π/ℓ we obtain the resistive dissipation scales as

ks
σ ∼ 11 m−1, kr

σ ∼ 20 m−1,

where the superscript refers to smooth (s) or rough (r) boundary. This shows that the baffles

effectively reduce the resistive dissipative scale (because k ∼ 1/ℓ). The dissipative scale with

rough boundary are similar to the ones obtained in the Madison experiment which has impellers.

The Rossby number dependence of the Power Spectrum can reveal the presence of different

hydrodynamics states in a similar way it was done for water in the 3-m experiment in Zimmerman

et al. [4] Figure 4. In Figure 5.20 we can see different power spectrum for a coarse run in Rossby

numbers at both sides of the origin: for counter and corotating spheres. The present of different

states is evident. For negative Rossby numbers there is a clear transition in the dynamics of the

systems for Ro−1 ∼ −0.198 which coincides with the maximum torque peak. The states before

the peak (so for Ro−1 > −0.198, below the green line in the left plot of Figure 5.20) have a

less pronounce slope and have less oscillations between 10 and 100 ωΩo. There is only one clear

peak at the frequency of the outer sphere, which is expected for a rotating system. For Rossby

numbers after the peak (Ro−1 < −0.198) the slope is steeper and it is actually closer to the -11/3

predicted by Moffatt [73]. These states have broader peaks at the rotation frequency of the outer

sphere, with possibly some harmonics present at higher frequencies.

For positive Rossby numbers the picture is very different. The modes show much more

activity for frequencies lower than the outer sphere rotation rate. These types of modes, with
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Figure 5.20: Power Spectrum of the internal probe magnetic field signal in the cylindrical
radial direction (Br) for the Scoop Mode of the rough inner sphere in their respective modes
with corotating and counter-rotating regimes for different Rossby numbers. The frequencies
are normalized by the outer sphere angular frequency and shifted one decade away with each
different Rossby number. A constant external dipolar magnetic field of 20 G in the center of the
experiment was present during the runs with positive Rossby number.
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frequencies approximately 0.12Ωo are known as cylindrical modes, and have been found repeatedly

in spherical Couette simulations and experiments (See for instance Wicht [11]). This cylindrical

mode is known to have a strong m = 1 component as we observed for the Gauss decomposition

of these spectra (not shown here). There is also a transitional state for Ro−1 ∼ 0.35 which

coincides with the minimum relative torque in Figure 3.8. There is also a broader peak for the Ωo

angular frequency for Ro−1 > 0.35 with also some stronger harmonics. The slope is also steeper

for these Rossby numbers with values again closer to -11/3.

For comparison with the Wedge Mode, we show in Figure 5.21 the power spectrum of very

similar runs as the one performed for the Scoop mode in Figure 5.20. The differences are not

striking. We could argue that there seem to be stronger subharmonics of the Ωo peak for the top

three curves for both Ro−1 < 0 and Ro−1 > 0. This might suggest the presence of more modes

as shown in the mean spherical harmonic plots of the external field array in Figures 5.15 and

5.15.

The previous plots were performed in a parameter space in which there was not equivalent

data for the smooth inner sphere case. In particular in the absence of an applied external field.

However, with a weak applied field there are runs with a fine ramp around the respective torque

peaks that show more accurately the transition of state before and after the peak. This is shown

in Figure 5.22. The most important feature of these plots is that the transition of states is more

clear for rough than for smooth boundary. It can be seen in the gap between yellow and green

plots, which is wider for rough boundary. Considering the results from the water experiment,

and how this transition is probably related to the development of a full meridional recirculation,

these results speaks of how the baffle have, presumably, increased the strength of the flows in this

regime making the change of state more evident in the radial amplification of the fields capture
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Figure 5.21: Power Spectrum of the internal probe magnetic field signal in the cylindrical radial
direction (Br) for the Wedge Mode of the rough inner sphere with corotating and counterotating
regimes for different Rossby numbers. The frequencies are normalized by the outer sphere
angular frequency and shifted one decade away with each different Rossby number. A constant
external dipolar magnetic field of 20 G in the center of the experiment was present during the
runs with a positive Rossby number.
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Figure 5.22: Power Spectrum of the internal probe magnetic field signal in the cylindrical radial
direction (Br) around the maximum torque regime (smooth Ro−1 = 0.055, rough Ro−1 = 0.21)
for a constant magnetic Reynolds number (Rm ∼ 950 for Smooth and Rm ∼ 220 for Rough)
for the two types of boundaries and their respective modes (scoop[<] and wedge[>]). Dashed
lines indicate power laws for comparison. The frequencies are normalized by the outer sphere
angular frequency and shifted one decade away with each different Reynolds number. A constant
external dipolar magnetic field of 20 G in the center of the experiment was present during all the
runs.

by our internal probes.

5.2.3.2 Probability Distributions

Another conventional time dependent analysis performed in turbulent flows is the probability

distribution of the data. Let us start with comparing the effect of baffles in the shape on the

distribution. We are going to focus on the runs of Figure 5.12 for an applied external magnetic

field. The results in this section are very preliminary but we believe there is potential for a

deeper study of the magnetohydrodynamics around the maximum torque regime (named optimal

transport in some Taylor Couette references [92, 93]).

The Figure 5.23 we can see the normalize Probability Distribution Function (PDF) for

different Rossby numbers in the smooth, rough scoop and wedge mode of the 3-m experiment.

The results shown are for the internal radial probe, although similar behavior can be observed
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Figure 5.23: Probability distribution function for the internal probe in the cylindrical radial
direction for different Rossby numbers around the maximum torque regime for smooth and rough
inner sphere in their two modes runs of Figure 5.12 with an externally applied field of 20G.
Dotted lines indicate Gaussian to guide the eye.

for the other probes. The main point we want to address in these figures is the transition for

states before and after the torque peak that can be clearly seen in the plots. It is less evident in

the smooth boundary case but this is because the standard deviation of the data is less than in the

rough boundary case, which is also a remarkable effect of the baffles in the dynamics of the flows.

Another important observation is that the standard deviation decreases significantly for values at

the peak. In other words, the distributions are much wider for values outside the maximum torque

peak indicating the presence of transient behavior of the order of the flow evolution. Gaussians

have been plotted to these curves for comparison. There seem to be some small deviations from

Gaussians in the tails and some skewness.

In Figure 5.24 we can see the standard deviation for runs around the maximum torque

regime as a function of the deviation from the maximum torque peak Rossby number and as a

function of the magnetic Reynolds number. One characteristic of the transition to dynamo action

reported in Monchaux et al. [75] was the fluctuations of the magnetic field as a function of the

Reynolds number. They are expected to jump right at the transition. In Figure 5.24 we tried
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Figure 5.24: Standard deviation from the mean for the internal magnetic field probe in the
cylindrical radial direction as a function of the centered Rossby number (left) around the
maximum torque regime and as a function of the magnetic Reynolds number (right).

to evaluate this fluctuation for the maximum torque regime without success. Even though the

fluctuations increase significantly with baffles, and that we can see the clear change of state after

and before the torque peak, the transition for magnetic Reynolds number is not evident from

the plots. We believe that we are either before the transition, or we are past the transition, but

with the applied field we might be saturating the dynamo state. If there is a transition for lower

magnetic Reynolds, it takes place at values below Rm = 150 and the resulting geometry of the

dynamo is not clear. However, looking at the bright side, we still believe that the increment in the

fluctuations is a relevant feature for getting us closer to dynamo action, and it is a clear result of

the baffles addition.

In the absence of an applied field, the dynamics around the maximum torque regime are

similar in terms of the existence of the transition before and after the peak. However, as we can

see in Figure 5.25, the distributions are no longer Gaussian, showing some strong skewness for

the radial direction, and even some kurtosis for the azimuthal direction probe. We must mention

that these changes are stronger for more negative Rossby numbers than the values for Figure
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Figure 5.25: Probability distribution function for the internal probe in the cylindrical radial and
azimuthal direction for different Rossby numbers around the maximum torque regime for the
rough inner sphere in the scoop mode if the runs in Figure 5.9 with no external field applied .
Dotted lines indicate Gaussians to guide the eye.

5.23, so we are entering in Inertial Modes territory (see for instance [13]). This could imply the

presence of modes that will cause oscillation of the flows between different values, which could

explain the shape of the distributions. However, the suppressing effect of the magnetic field could

be a reason for the closer to Gaussian behavior of the distributions.
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Chapter 6: Conclusions and Recommendations

6.1 Conclusions

We present results on torque scaling and velocimetry of spherical Couette flows with rough

boundaries in a hydrodynamics experiment of 40 cm in diameter and compare them with previous

work done for smooth boundaries. For roughening the inner sphere boundary we studied four

designs of baffles: smooth (no baffles), straight, chevron and alpha baffles (Fig. 3.2) with 5% and

10% of radius height.

We observed different power laws in the dimensionless torque as a function of the Reynolds

number (Fig. 3.6) for these different configurations and identified a difference in the torque for

counter-clockwise and clockwise rotation of the inner sphere with chevron and alpha baffles

due to their asymmetry. Additionally, the torque increases with increased baffle height for three

different heights (including smooth case), and it shows a linear dependence rather than a quadratic

one, as was reported for Taylor-Couette flows [63].

For the Rossby dependence of the torque, we observed a significant increase in the normalized

differential torque when adding baffles, which indicates an increase in the angular momentum

transport (Fig. 3.8). The location of the maximum torque peak also changes, not only with the

baffle height but also when comparing wedge mode with scoop mode in the case of chevron and

alpha baffles. This is evidence of the change in the dynamics of the flows for these two modes.
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Velocimetry in the equatorial plane (Fig. 3.9) shows a fully extended equatorial jet that

reaches the outer boundary when the torque reaches its maximum relative value. This location in

the parameter space matches the equatorial jet instability observed by Wicht [11]. In this region,

the azimuthal velocity is at its minimum value throughout all the Rossby numbers measured.

This region of maximum normalized torque seems to be a good candidate for the generation of

dynamo action in the 3-m experiment, since it has shown maximum radial amplification of the

applied magnetic field [4].

Velocimetry measurements of the meridional section at this maximum torque Rossby number

showed a significant amplification of the poloidal flows and these results are in agreement with

previous equatorial velocimetry measurements (Fig. 3.11 and Fig. 3.12). A difference in the

topology of the flows generated was observed in both the equatorial and meridional sections.

We developed a safe and efficient method to transfer 12 tons of liquid sodium from a

spherical Couette flow experiment in a single day operation. The procedure was applied twice,

for draining and refilling the experiment, showing its effectiveness. Difficulties found along the

way were overcome with efficiency, patience and especially teamwork. This standard operation

procedure could be adapted to similar experiments and containers. We showed that draining,

cleaning and fixing an experimental vessel previously filled with sodium is possible. This task

was considered nearly impossible by previous members of this lab: ”This is because it would be

extremely difficult to take the sodium out and perform fixes; once sodium is in place, it will be

there for the life of the experiment.”

We disassembled, fixed, and assembled back the 3-m experiment including motors, motors

frame, electronics and instrumentation. We designed and installed a new bayonet coupler and

replaced the bottom inner bearing, the top inner and outer bearings. We also replaced all the lip
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seals in the experiment. We installed a new internal finger probe with 2 magnetic Hall probes. We

installed asymmetric baffles in the inner sphere following the results from the 40-cm experiment.

Torque measurements in the new baffled 3-m experiment showed consistency with the

estimation based on the 40-cm torque results. However, we did not observe an equivalent change

in the dependence of the torque as a function of the Rossby number. The water experiment

suggested that there would be a significant difference in the location of the maximum torque

peak and this was not the case. According to the water experiment, the shift of the location of

the maximum torque peak corresponds to baffles higher than 5%. Nevertheless, the values for the

amplitude of the torque in this region was consistent with the results of the water experiment.

We were able to extract all the torque available than the inner motor could supply at those

rotation speeds, something that was not possible with a smooth sphere, without pushing the safety

constraints on the experiment. In terms of power, we were only able to provide only 1/4 with

respect to the smooth inner boundary case, which is only 80 kW of the 260 kW available at full

speed. Despite this decrease in the power supplied, we were able to generate magnetic fields with

around two times more amplitude, both internally and externally.

Initial runs with stationary outer sphere and no applied field were performed. These showed

an increment of amplified fields by a factor of 3-4 for the external fields (in the form of Gauss

coefficient decomposition) and a factor of two for the internal fields, although no transition to

dynamo was evident. For the dependence on the Rossby number, we performed initial runs with

no applied field around the maximum torque regime and observed a significant amplification

of the external fields, in particular the dipole mode spiked for the maximum torque peak. The

l = 3,m = 0 mode was dominant around this regions as well. This might indicate the presence

of a strong uniform building field, which together with the l = 2,m = 0 velocity field, gave rise

150



to the l = 3,m = 0 magnetic field mode.

We performed runs with a weak externally applied magnetic field in the dipole configuration

to fix the geometry of the applied field and to go above the level of the ambient field. These runs

allowed us to directly compare toruns with the smooth sphere performed mostly in the same

parameter space. The results showed a significant amplification of the internal fields in both the

azimuthal and radial directions. The amplification reached almost 20 G in both directions which

was the same value as the applied field in the center of the experiment. This is around double

the amplitude of the field amplified with the smooth sphere but additionally with a magnetic

Reynolds number 4 times smaller. However, no transition to dynamo was evident from the

results. The amplification seemed to be linear with magnetic Reynolds number, and a transition to

dynamo would show a discontinuity in this parameter as reported in previous successful dynamo

experiments. The non-linearity in the external magnetic modes might suggest that a transition is

close; however, this could also be just due to temperature changes in the bias level of the probes

from the extended rotation periods of the outer sphere. The power spectra measurements of the

internal fields revealed a -11/3 slope around the maximum torque peak for the rough inner sphere.

This value implies the Taylor-Hypothesis can be applied, and it is also the predicted value of the

magnetic cascade for highly turbulent flows for the resistive dissipative range. This power law

was found in the Madison experiment (which did not yield a dynamo), but it was not found in the

VKS experiment (which did yield a dynamo). The power spectra as a function of Rossby number

showed a clear transition between states for both wedge and scoop mode of the rough inner

sphere. In particular, changes of state take place at the maximum and minimum torque regime,

both characterized by a change in the slope in the dissipative range, and additional oscillations

and modes for lower frequencies.
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Probability distributions also showed a transition between states and a deviation from

Gaussian behaviour in the case of no applied external field. The standard deviation, which is

a measure of the fluctuations from the mean in the system, show a significant increment in the

presence of roughness for the internal probes. This is another positive factor towards dynamo

action as shown in previous successful dynamo experiments.

6.2 Recommendations

For the 40-cm experiment we are deeply interested in using the current hardware and

software to perform velocimetry in other locations of the parameter space, targeting possibly

bistability states, which internal flow patterns are only hypothesized. Additionally, we propose to

perform that velocimetry measurements of planes parallel to the equator, at mid and high latitude.

This is with the purpose of having better knowledge of the velocity field in the 3-m experiment.

In particular, high latitudes are desired since this is where the internal hall probes are located. We

could test the change in the shear direction with and without baffles at this particular location.

More runs in different parameter space are suggested for the 3-m experiment. Given the

time constraints during the end of this PhD, we could not have another set of runs based on the

results of the first one. For instance, a more detailed set of runs in the positive Rossby number

region is always interested, although the preliminary runs did not show a significant amplification

of the radial and external fields. However, the correlations between torque and magnetic field in

Figure 5.4 are interesting enough to propose more runs in this parameters. Another region in the

parameter space that must be explored is the inertial mode regime, which is of great interest for

the geophysics community. It is located for smooth inner sphere at Ro−1 < −0.5 but it could
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have moved to smaller inverse Rossby numbers in the same way it happened for the maximum

torque regime.

More careful runs to understand the origin of the building field are desired. Additionally,

runs to study the effect of temperature fluctuations in the bias value of the voltage in the Hall

probes would be of interest. We performed preliminary runs to address this issue but a more

detailed analysis of the data is suggested. There are advances in trying to suppress the building

field currently taken place, which we considered as an important step in the right direction.

Due to the torque saturation for the inner motor, we suggest that a gearbox be installed. A

possibility discussed with Nolan Ballew would be to install a set of gears and belts on the inner

motor frame to connect to the shaft. This will require to possibly change the inner motor frame,

so this is not a minor step in the research and it could take at least a year of planning, installation,

and testing. However, given the significant increment in the magnetic field amplification that we

obtained with baffles, which we believe is evidence of the improvement of the flows topology

towards dynamo action, exploring higher magnetic Reynolds numbers is an obvious future step.
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Appendix A: Mechanical Drawings

We present the mechanical drawings for: the dip tube assembly, the baffles assembly, the

bayonet coupler, the new internal finger probe holder and the storage tank (provided by Central

Fabricators Inc.).
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Appendix B: Standard Operation Procedure

We present only the Extraction SOP for reasons of briefness. The Insertion SOP is very

similar and edited from this SOP. Contact the author of this dissertation for more information.
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11/10/20
3M Sodium Transfer from Sphere to Tank SOP

_________________________________________________________________________

TRANSFER PREPARATIONS: Describes the preparations to be done in the lab and in the
experiment before day one of sodium transfer operation.
Potential Hazards

Fire: NO
Pressure: NO
Temperature: NO
Tripping: YES

→ Wear closed-toe shoes, walk carefully
Fall from height: YES

→ Do not lean over railings, keep both hands on railings
when going up or down stairs

❏ Clear out top of the cube.
❏ Remove all electronics from the top of the cube and sphere.
❏ Maintain only temperature measurement devices and battery chargers.

❏ Change two ports.
❏ install the Sphere Transfer Port with the lip seal secured by the lip seal

holder.
❏ install visualization port.

❏ Inert sphere/pressure testing.
❏ Remove inner motor.
❏ Remove the inner motor frame.
❏ Remove the outer motor.
❏ Remove the outer motor frame.
❏ Install flooring on top of the cube at the former inner motor frame/outer motor

location.
❏ Visually inspect oil plumbing lines, ensure there are no leaks.
❏ Check the drain in the trench.

❏ Ensure water flows, no clogs.
❏ Check scrubber/blower connections.
❏ Turn on the blower from inside Shed.
❏ Check both power sources for the blower.

❏ Change the power source outside while the blower is ON.
❏ Check vent connections

❏ Overhead vent configuration
Prepare the Tank Connections:

❏ Make sure the storage tank is still inert at 0.5 psi.
❏ Connect transfer line to storage tank.
❏ Close Valve E on Storage Tank.
❏ Perform a leak check of the transfer line configuration: Install Valve B2 flange

set up (add photo) to end of transfer line (Valve C). Add 10 psi using Primary

1

3-m Gas System, opening valve H5 and B2. When done, close H5 and B2 and
disconnect the blue hose (flex line between valve H5 and B2. See diagram 1-a).
Check on day two of operations.

❏ Set the transfer line in position on top of the cube.
❏ Locate Dip Tube and situate on top of the cube.

_________________________________________________________________________

DAY ONE BEFORE RUN CHECKLIST: Describes the steps to be done during the day one,
and before the beginning of the operations.

❏ Clear all steps in “Transfer preparations” section
❏ Locate PPE and fire resistant clothing (jacket, gloves, safety glasses, helmets

w/shield, closed-toe shoes)
❏ Locate and test walkie-talkies
❏ Prerequisite weather conditions: no ice/snow conditions outside
❏ Perform pre-heater check

❏ Visually inspect for leaks
❏ Check water supply for scrubber in Ling room (0204D)

❏ Energize solenoid in Shed
❏ Ensure water flows
❏ Check vents are set for the overhead blower system.

❏ If cold: drain outside lines with valve outside trapdoor
❏ Check liquid nitrogen supply and fire suppression system

❏ 2 dewars required: One on the top of the cube and other near the tank in
front of the motor drivers.

❏ Minimum weight: 231 kg (100kg of liquid nitrogen plus 131 kg of
the dewar)

❏ Connect power and hose to dewar liquid port and open dewar liquid
valve

❏ Test fire suppression system by pressing red LN₂ button briefly (until
liquid is visibly ejecting)

❏ Check the LN2 gun next to tank (until liquid is visibly ejecting)
❏ Check UPS battery backup for solenoid valves
❏ Check oil system

❏ Ensure system is connected
❏ Ensure all valves are operable

❏ Check nitrogen gas supply
❏ 6 bottles required
❏ Minimum pressure: 2200 psi for each bottle
❏ At the Transfer Gas Manifold:

2
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❏ Set the output pressure to 10 psi at pressure regulators (R1-R4)
and open valves according to Diagram 3: Valves N1-N5 Open,
Valves N6, N7 Closed.

❏ Check that the flexible metal hose is attached to the 3-m gas port (valve
A2 closed, H2 open)

❏ Install check valve above G1 valve on the tank gas port

START PUMP/HEATER CHECKLIST
Located in Shed, on Sodium computer
Program Initialization Startup [AWAITING UPDATED CODE]

❏ Open to edit notes.txt file for daily operations notes
❏ On sodium desktop, open command line terminal:
❏ cd /data/bin/3mcontrol
❏ python3 bigsister15.py

❏ Click “OK” through warnings about missing vibflag and status.dat
❏ <Ctrl-S> or click “menu -> start” to start control program. Time should start updating.
❏ Cycle bypass valve to 99/closed

❏ Click up arrow to 3
❏ Type “99”
❏ Confirm blue “Closed” light for bypass valve lit on control box
❏ Back to 1/open
❏ Click down arrow to 97
❏ Type “1”
❏ Confirm orange “Open” light for bypass valve lit on control box

❏ Ensure valves at pipe penetrations through wall are open
❏ Ensure that outside cooling units are valved off
❏ Start pump

❏ Press white “ON” button on control box
❏ Listen to ensure pump is on
❏ Visually inspect pumping system for leaks
❏ Turn off pump
❏ End bigsister15.py

❏ Click red “x”

_________________________________________________________________________

DAY ONE: Heating Operations

At least two people required for day one heating sodium operations
Training Requirements:

❏ Sodium Safety Training
❏ UMD Campus Safety Training

Before Beginning Run

3

❏ Call campus police 301-405-3333: “beginning hot sodium operations in ERF Bldg
#223”

❏ Check high bay for clear egress around the cube and high-bay. Do not proceed
until all three of the following items are addressed.

❏ Ensure two exit doors are operable with a clear path to each.
❏ Inspect for clutter, combustible materials and remove as needed.
❏ Check class D materials and portable fire extinguishers are present.

Program Initialization Startup
❏ Open to edit notes.txt file for daily operations notes
❏ On sodium desktop, open four command line terminals

❏ Terminal 1:
❏ cd /data/bin/3mcontrol
❏ mkdir /data/3m/<todays date in mmddyy format> (example: mkdir

/data/3m/060413)
❏ chmod 777 /data/3m/<todays date>
❏ python3 plotter2.py &

❏ Terminal 2:
❏ cd /data/bin/3mcontrol
❏ python3 bigsister15.py

❏ Click “OK” through warnings about missing vibflag and
status.dat

❏ <Ctrl-S> or click “menu -> start” to start control program. Time should
start updating.

❏ Terminal 3:
❏ cd /data/bin/3mcontrol
❏ python3 smoke4.py

❏ Terminal 4:
❏ cd /data/bin/3mcontrol
❏ ./wtemplog

note: wtemplog program is prone to crashing. If it crashes, 3m.php3
web status page will display “Missing or old wtemp.log, reading
directly...” <Ctrl-C> and start again.

❏ open web browser and go to the status page, oil status page, and LOCAL camera
page:

http://sodium.umd.edu/3m.php3
http://sodium.umd.edu/oil.php
http://localhost/cam/

important note: chrome and other browsers cannot open enough simultaneous
connections to view the camera feeds and status pages from ***the same host*** so

4
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always use sodium.umd.edu for status pages and localhost or 192.168.1.1 for the
cameras

Gather infrared cameras and chargers in Shed
❏ Test cameras/chargers
❏ Plug cameras in to charge

❏ Ensure that oil system is plumbed for appropriate operation - Heating ONLY Sphere:
❏ Valve O1 open
❏ Valve O2 open
❏ Valve O3 closed.
❏ Valve O4 closed.

❏ Start pump (press white “ON” button on control box)
❏ Listen to ensure pump is on
❏ Visually inspect pumping system (check inside the cube as well) for leaks

❏ If leak is found:
❏ Turn system off, fix leak, proceed ONLY after system is

confirmed with no leaks
❏ Put on PPE and fire resistant clothing

❏ jacket
❏ gloves
❏ safety glasses
❏ helmet w/shield
❏ protective work boots

❏ Check thermometry
❏ Check ambient room temperature readouts on control computer
❏ Ensure all temperature readouts are within 1-2 degrees of one another

Heating
❏ At Sodium computer:

❏ Set heaters to 100% in bigsister.py GUI

❏ Monitor gas pressure with camera as sphere starts to heat
http://sodium.umd.edu/cam

❏ name ‘3m’ , password ********
❏ Ensure gas pressure in sphere: <= 1psig
❏ When pressure starts to approach 1 psig (on order of 15 min. to one hour):

❏ Close 3-m N₂ line at A3: Close valve H3.

5

❏ Vent sphere pressure down to <0.5 psig using lever at manifold
connected to A3.

❏ Close valve A3.
❏ Remove gas manifold from A3.
❏ Attach oil bubbler to A3.
❏ SLOWLY open valve A3.

Caution: oil can spray if opened too quickly
❏ Make sure “gas handling” camera can see the bubbler

❏ Monitor bubbler to make sure it’s bubbling
❏ If bubbler camera has failed:

❏ STOP heating
❏ Repair/replace camera as necessary
❏ Proceed ONLY when issue is cleared by PI

❏ If bubbler has stopped:
❏ STOP heating
❏ Check connections between bubbler and sphere
❏ Check hot oil system functioning
❏ Proceed ONLY when issue is cleared by PI

❏ Monitor http://sodium.umd.edu/3m.php3
❏ Make sure wtemplog program hasn't crashed

❏ {ADD CRASH MESSAGE HERE}
❏ If wtemplog has crashed:

❏ STOP heating
❏ Re-run Terminal 4 commands

❏ ./wtemplog
note: wtemplog program is prone to crashing. If it crashes, 3m.php3

web status page will display “Missing or old wtemp.log, reading
directly...” <Ctrl-C> and start again.

End of Day
❏ Set heater power to 0.

❏ Wait 2 minutes
❏ Turn heaters off at circuit breaker
❏ Turn pump off. Make sure you can hear the pump turning off. If not sure, go and

visually inspect the pump outside.
❏ Close Valve A3.
❏ Remove bubbler.
❏ Flow gas through gas line for 30 seconds: Open Valve H3.

❏ set gas regulator to 0.5 psig
❏ attach to sphere port valve A3.
❏ open valve A3.

❏ Adjust “Gas Handling Cam” to view gas gauge
❏ Verify outside that pump is off and that the heaters are off with IR camera
❏ Monitor all temperatures in system graph to ensure they are decreasing over time
❏ End plotter2.py

❏ Click red “x”

6
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❏ End bigsister15.py
❏ Click red “x”

❏ Keep wtemplog open and running
❏ Keep smoke5.py open and running
❏ Call campus police 301-405-3333: “ending hot sodium operations for the day in ERF

bldg #223”.
_________________________________________________________________________

DAY TWO: Continuing heating and Sodium Transfer

At least two people required for Continuing Heating Operation

Before Beginning Run

❏ Call campus police 405-5333: “beginning day of hot sodium operations in ERF Bldg
#223”

❏ Check high bay for clutter and clear egress

Check the Tank Connections
❏ Make sure the storage tank is still inert at 0.5 psi.
❏ Check that the transfer line is still at 10 psi with valve E closed.

❏ If not, redo all transfer line connections and perform another leak check.
Make sure gaskets are in good condition. Turn the bolts in on alternate order
until ALL are firmly tight.

❏ If still at 10 psi. Slowly open Valve B2 to release pressure. Disconnect Valve
B2 flange set up from the transfer line and install it on the dip tube. (Use new
gasket)

BEFORE RUN CHECKLIST

❏ Clear all steps in “Transfer preparations” section
❏ Locate PPE and fire resistant clothing (jacket, gloves, safety glasses, helmets

w/shield)
❏ Locate and test walkie-talkies
❏ Prerequisite weather conditions: no ice/snow conditions outside
❏ Perform pre-heater check

❏ Visually inspect for leaks
❏ Check water supply for scrubber in Ling room (0204D)

❏ Energize solenoid in Shed
❏ Ensure water flows
❏ Check vents are set for the overhead blower system.

❏ If cold: drain outside lines with valve outside trapdoor
❏ Check liquid nitrogen supply and fire suppression system

❏ 2 dewars required: One on the top of the cube and other near the tank in
front of the motor drivers.
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❏ Minimum weight: 231 kg (100kg of liquid nitrogen plus 131 kg of the
dewar)

❏ Connect power and hose to dewar liquid port and open dewar valve
❏ Test fire suppression system by pressing red LN₂ button briefly (10

seconds)
❏ Check that LN2 gun work
❏ Check battery backup for solenoid valves
❏ Check oil system

❏ Ensure system is connected
❏ Make sure all valves are operable

❏ Check nitrogen gas supply
❏ 5 bottles required
❏ Minimum pressure: 2000 psi for each bottle
❏ Install bottles and open valves according to Diagram 3: Valves N1-N5

Open. Valve N6 Closed.
❏ Check ventilation system

❏ Turn on blower from inside Shed
❏ Check both power sources for blower

❏ Change power source outside while blower is ON

In Shed, at Sodium computer:
Program Initialization Startup

❏ Open to edit notes.txt file for daily operations notes
❏ On sodium desktop, open four command line terminals

❏ Terminal 1:
❏ cd /data/bin/3mcontrol
❏ mkdir /data/3m/<todays date in mmddyy format> (example: mkdir

/data/3m/060413)
❏ chmod 777 /data/3m/<todays date>
❏ python3 plotter2.py &

❏ Terminal 2:
❏ cd /data/bin/3mcontrol
❏ python3 bigsister15.py

❏ Click “OK” through warnings about missing vibflag and
status.dat

❏ <Ctrl-S> or click “menu -> start” to start control program. Time should
start updating.

❏ Terminal 3:
❏ cd /data/bin/3mcontrol
❏ python3 smoke4.py

❏ Terminal 4:
❏ cd /data/bin/3mcontrol
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❏ ./wtemplog
note: wtemplog program is prone to crashing. If it crashes, 3m.php3
web status page will display “Missing or old wtemp.log, reading
directly...” <Ctrl-C> and start again.

❏ open web browser and go to the status page, oil status page, and LOCAL camera
page:

http://sodium.umd.edu/3m.php3
http://sodium.umd.edu/oil.php
http://localhost/cam/

important note: chrome and other browsers cannot open enough simultaneous
connections to view the camera feeds and status pages from ***the same host*** so
always use sodium.umd.edu for status pages and localhost or 192.168.1.1 for the
cameras

Pump/heater starting
❏ Put on PPE and fire resistant clothing

❏ jacket
❏ gloves
❏ safety glasses
❏ helmet w/shield
❏ protective work boots
❏ Check thermometry

❏ Check ambient room temperature readouts on control
computer from [insert code here]

❏ Ensure all temperature readouts are within 1-2 degrees of one
another

❏ Gather infrared cameras and chargers in Shed
❏ Test cameras/chargers
❏ Plug cameras in to charge

❏ Ensure that oil system is plumbed for appropriate operation - Heating ONLY Sphere:
❏ Valve O1 open
❏ Valve O2 open
❏ Valve O3 closed.
❏ Valve O4 closed.

❏ Start pump (press white “ON” button on control box)
❏ Listen to ensure pump is on
❏ Visually inspect pumping system (check inside the cube as well) for leaks

❏ If leak is found:
❏ Turn system off, fix leak, proceed ONLY after system is

confirmed with no leaks
❏ Set heaters to 100% in main control program

Heating

9

❏ Monitor gas pressure with camera as sphere starts to heat
http://sodium.umd.edu/cam

❏ name ‘3m’ , password ********
❏ Ensure gas pressure in sphere: <= 1psig
❏ When pressure starts to approach 1 psig (on order of 15 min. to one hour):

❏ Close 3-m N₂ line at A3: Close valve H3.
❏ Vent sphere pressure down to <0.5 psig using lever at manifold

connected to A3.
❏ Close valve A3.
❏ Remove gas manifold from A3.
❏ Attach oil bubbler to A3.
❏ SLOWLY open valve A3.

Caution: oil can spray if opened too quickly
❏ Make sure “gas handling” camera can see the bubbler

❏ Monitor bubbler to make sure it’s bubbling
❏ If bubbler camera has failed:

❏ STOP heating
❏ Repair/replace camera as necessary
❏ Proceed ONLY when issue is cleared by PI

❏ If bubbler has stopped:
❏ STOP heating
❏ Check connections between bubbler and sphere
❏ Check hot oil system functioning
❏ Proceed ONLY when issue is cleared by PI

❏ Monitor http://sodium.umd.edu/3m.php3
❏ Make sure wtemplog program hasn't crashed

❏ If wtemplog has crashed:
❏ STOP heating
❏ cd /data/bin/3mcontrol
❏ ./wtemplog

❏ Monitor temperature and look for plateau at approximately 95°C when sodium is
melting
When shell bottom temperature measurement >115°C:

❏ Close bubbler valve A3
❏ Remove bubbler

❏ Store in downstairs cabinets
❏ Monitor pressure to make sure it remains between 0-5 PSI

❏ reduce pressure using valve A3 if > 5 PSI
❏ Heat approximately 10° more to 115°C

Tank Heating Procedure
❏ When temperature reaches 115°C start heating the tank by setting Oil Valves

in the proper position.
❏ Open Valves O4.(See diagram 5)
❏ Slowly open Valve O3.

❏ Check Valves Status

10
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❏ Valve O1 open
❏ Valve O2 open
❏ Valve O3 open
❏ Valve O4 open.

❏ Turn down heating to 50% at a few degrees below operating temperature
(120°C)

❏ Continue to monitor the temperature on the sphere.
❏ Goal: maintain 120 +/- 5 C

❏ If temperature shows a negative slope, make slight
adjustments to heating settings in response.

_________________________________________________________________________

Sodium Transfer SOP
At least six people are required for this hot sodium operation in addition to the PI.

Requirements
❏ Two individuals on top of the cube with liquid nitrogen extinguisher

❏ responsible for reading temperature and pressure sensors on top of the cube
❏ responsible for dip tube insertion

❏ Two individuals next to the storage tank with liquid nitrogen extinguisher
❏ responsible for checking the transfer line for leaks

❏ One individual in the control room
❏ responsible for monitoring temperature and cameras.

❏ One individual between the Storage Tank and control room monitoring the SOP and
coordinating the whole procedure.

❏ Ensure SOP and Failure Mode Decision Tree are in accessible locations for every
member of the team.

❏ Make sure the storage tank is still pressurized at 0.5 psi.
❏ Locate laser height sensor and FLIR thermal camera and bring to the top of the cube.
❏ Locate the second thermal camera (phone attachment) to be used downstairs.
❏ Run

Transfer monitor
❏ At sodium computer launch terminal and launch `pycharm` command the PyCharm

app will appear
❏ Open `transfer monitor project` at /data/bin/transfer_monitor
❏ Run python code `hello.py`, Now the application is running and available at

sodium.umd.edu:2020
❏ Set a laptop connected to wifi on the top of the cube and open sodium.umd.edu:2020
❏ In case of errors read manual available at the application, if necessary reboot the app

Dip tube preparation
❏ Cap dip tube with Gas Flange (Valve B2) removed from transfer line at the beginning

of day two.
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❏ Place O-ring and O-ring holder in position after ValveB by sliding it upward from the
bottom of the dip tube.

❏ Connect dip tube to N₂ gas line (Valve B2 to Primarily 3-m Gas System - Valve H5)
❏ Open Valve B2 and close Valve H5.
❏ Suspend the dip tube with the crane and pulley system above the port A connected

to the Primary 3-m Gas System. (See diagram 1-a)

Dip tube insertion
❏ When temperature has reached approximately 120°C

❏ Set the pressure on the Primarily 3-m Gas System to 0.5 psi.
❏ Valve N2 out of the Sphere using A3 until it reaches 0.5 psi.
❏ Flow N₂ through the dip tube by opening valve H5 for 2 minutes.
❏ Ensure valve status: (Diagram 1-A)

❏ Valve B open
❏ Valve B2 open
❏ Valve H3 open
❏ Valve H5 open
❏ Valve H2 closed
❏ Valve H4 closed
❏ Valve A closed
❏ Valve A3 open.

❏ Place the dip tube in position, right above Valve A.
❏ Reduce pressure on the Sphere to 0.5 psi by valving air out using A3
❏ Place the tip of the dip tube through the lip seal of the extraction flange until it hits the

Valve A inner ball.
❏ Slowly open the Valve A on the extraction flange while holding the dip tube -

❏ 1 operator manually stabilizing dip tube
❏ 1 operator using pulley system to lower dip tube

❏ Insert the dip tube into the sodium (It should slide around the inner sphere thanks to
its curvature and the inclination of the valve A)

❏ Stop when the dip tube touches the bottom of the outer sphere
❏ Make sure the dip tube is inserted at the correct height and angle:

❏ Check for references angles and markups on the dip tube and dip tube flange
❏ Adjust position of dip tube as necessary.

❏ Tighten o-ring on the flange above value A.
❏ Secure the dip tube in place using Dip Tube Spacers.
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❏ Close Valve B
❏ Close Valve H5.
❏ Close Valve B2.
❏ Ensure valve status: (Diagram 1-a)

❏ Valve A open.
❏ Valve H2 closed.
❏ Valve H4 closed.
❏ Valve B closed.
❏ Valve B2 closed.
❏ Valve H3 open.
❏ Valve A3 open.

❏ Lock out valve B closed.
❏ Remove Gas Flange from dip tube (Valve B2).
❏ Open Valve C 45 degrees.
❏ Connect transfer line flange to the dip tube flange (see Diagram 1-b).
❏ Ensure pressure in the storage tank should be 0.5±0.1 psi. Adjust using valve G1 on

the Storage tank if necessary.
❏ Fully Open Valve C.
❏ Start heating the transfer line until temperature reaches 120C. Use the

Autotransformer to lower voltage until temperature stabilizes.
❏ Ensure valve D is open.
❏ Ensure valve E is open.

❏ Ensure valve status:
❏ Valve A open.
❏ Valve C open.
❏ Valve D open.
❏ Valve E open.
❏ Valve B closed.
❏ Valve H2 closed.
❏ Valve H4 closed.
❏ Valve H3 open.

❏ Ensure temperature on sphere around 120C +/- 5C

❏ On Transfer Gas Manifold:
❏ Open valve A2 on Transfer Gas Port (TGP) in the Sphere.
❏ Open valve H2 on the Transfer Gas Manifold (TGM).
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❏ Close valve A3 on the Sphere.
❏ Close valve H3 on Primary 3-m Gas System.
❏ Monitor increase in pressure in sphere to 10 ± 0.1 psi.

❏ Ensure Storage Tank pressure is 0.5 ± 0.1 psi.
❏ Stop incoming gas to the Storage Tank:

❏ Close Valve G2 on Tank Gas Port (TGP) (See Diagram 1-b).
❏ Open Valve G1 on Tank Gas Port (TGP) to release the pressure to 0 psi.

❏ Ensure valve status:
❏ Valve A open.
❏ Valve C open.
❏ Valve D open.
❏ Valve E open.
❏ Valve H2 open.
❏ Valve A2 open.
❏ Valve B closed.
❏ Valve H4 closed.
❏ Valve H3 closed.
❏ Valve A3 closed.
❏ Valve G1 open.
❏ Valve G2 closed.

BEGINNING EXTRACTION
❏ Open valve B

NOTE: Sodium should start flowing into the tank. Use infrared
thermometry and temperature sensor to see temperature raising on
transfer line and Storage Tank.

❏ Monitor the pressure at P1.
❏ Increase transfer gas pressure to avoid sphere pressure decreases.

❏ In case of partial vacuum:
❏ Prepare to partially close Valve B.

NOTE: During a nominal transfer, static pressure in the sphere should be 10 ± 1
psi throughout the transfer. The incoming gas flow rate should be about 2-3
L/s. The sodium level should decrease 0.5-2 inches per minute as measured by
the laser rangefinder depending on the level. Temperature should be less than
130 C.

❏ Keep monitoring pressure sensors during the extraction.
❏ Check the sodium level of the 3M system using thermal camera and visualization

port.
❏ Check the sodium level on the storage tank using the IR camera.
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❏ Use the laser height sensor to measure and log the level of sodium in the sphere
approximately every 10 minutes.

NOTE: Time for emptying is approximately 2 hours

Finishing
❏ Check that sodium flow stops by different means: hearing, pressure decreasing on

3-m and flow rate increase, temperature decreasing on transfer line.
❏ When sodium flux stops:

❏ Lift the dip tube 10 cm.
❏ Secure dip tube with the Dip Tube Spacer.

❏ Stop gas flow from the Transfer Gas Manifold:
❏ Close A2.
❏ Close H2.

❏ Set the pressure on the sphere to 1 psi on the Primary 3-m Gas System.
❏ Open valve H3 on Primary 3-m Gas System.
❏ Open valve A3.

❏ Close Valve C on the transfer line.
❏ Close Valve B on the dip tube.
❏ Turn off transfer line heaters
❏ Close Valve G1 on Tank Gas Port.
❏ Open Valve G2 on Tank Gas Port.
❏ Set pressure regulators to maintain 1 psi pressure in both 3M and storage tank

during the cool down.
❏ Ensure valves status:

❏ Valve A open.
❏ Valve D open.
❏ Valve E open.
❏ Valve A3 open.
❏ Valve B closed.
❏ Valve C closed.
❏ Valve H2 closed.
❏ Valve H4 closed.
❏ Valve H3 open.
❏ Valve A2 closed.
❏ Valve G1 closed.
❏ Valve G2 open.

_________________________________________________________________________

End of Run SOP
❏ In Shed, on Sodium computer:

❏ Set 3M heater power to 0 in bigsister.py GUI.
❏ Turn pump off
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❏ Check pump is off.
❏ Remove main power from the heater control system.
❏ DO NOT LEAVE until all temperatures are decreasing everywhere.
❏ Call campus police 301-405-3333: “end of hot sodium transfer operations.”
❏ Prepare for cleaning the dip tube the next day after cooling down.

_________________________________________________________________________
END OF SODIUM REMOVAL SOP
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