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Fundamental processes in turbulent superfluid 4He are experimentally charac-

terized by refining a visualization technique recently introduced by Bewley et al.. A

mixture of hydrogen and helium gas is injected into the bulk fluid, which produces

a distribution of micron-sized hydrogen tracer particles that are visualized and in-

dividually tracked allowing for local velocity measurements. Tracer trajectories are

complex since some become trapped on the quantized vortices while others flow with

the normal fluid.

This technique is first applied to study the dynamics of a thermal counterflow.

The resulting observations constitute the first direct confirmation of two-fluid mo-

tions in He II and provide a quantitative test of the expression for the dependence

of the normal fluid velocity, vn, on the applied heat flux, q, derived by L. D. Landau

in 1941.

Nearly 20,000 individual reconnection events are identified for the first time

and used to characterize the dynamics by the minimum separation distance, δ(t),



between two reconnecting vortices. Dimensional arguments predict that this sep-

aration behaves asymptotically as δ(t) ≈ A (κ|t− t0|)1/2, where κ = h/m is the

quantum of circulation. The major finding of the experiments is strong support

for this asymptotic form with κ as the dominant controlling quantity. Neverthe-

less there are significant event-to-event fluctuations that are equally well fit by two

modified expressions: (a) an arbitrary power-law expression δ(t) = B|t − t0|α and

(b) a correction-factor expression δ(t) = A (κ|t− t0|)1/2 (1 + c|t − t0|). In light

of various physical interpretations we regard the correction-factor expression (b),

which attributes the observed deviations from the predicted asymptotic form to

fluctuations in the local environment and boundary conditions, as best describing

the experimental data. The observed dynamics appear statistically time-reversible,

suggesting that an effective equilibrium has been established in quantum turbulence

on the time scales investigated.

The hydrogen tracers allow for the first measurements of the local velocity

statistics of a turbulent quantum fluid. The distributions of velocity in the decaying

turbulence are strongly non-Gaussian with 1/v3 power-law tails in contrast to the

near-Gaussian statistics of homogenous and isotropic turbulence of classical fluids.

The dynamics of many vortex reconnection events are examined and simple scaling

arguments show that they yield the observed power-law tails.
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Chapter 1

Introduction

Significant problems regarding turbulent processes in superfluid 4He (He II)

remain unresolved. In particular, the local dynamics of turbulent He II have barely

been explored experimentally. This issue is exacerbated by the inability to visual-

ize the motions of He II in a manner very common to the study of classical fluid

turbulence. As such, the aim of this thesis is to undertake experimental studies of

turbulence in He II using a recently developed technique to directly visualize the

flow [1]†. The technique uses micron-sized solid hydrogen particles, which have been

shown to trace the motions of the normal fluid or be trapped by quantized vortices

[2], and enables one to characterize the dynamics of both the normal fluid and su-

perfluid components. We seek to fill in gaps in the body of work pertaining to He II

by using this modern technique in simple, standard experimental settings. Specifi-

cally, we obtain the first direct observations of: the two-fluid motions of He II, tens

of thousands of individual reconnection events between quantized vortices, and the

statistics of the local velocity field in quantum turbulence.

The initial discovery of the ability to observe the two-fluid motions in He II

was made by my predecessor Gregory Bewley and is detailed in his thesis [1]. All

of the experimental apparatus used for the work presented here has been designed

†The bibliography can be found at the end of the thesis.
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and constructed by the author under the technical supervision of Don Martin. The

entire apparatus used in Gregory Bewley’s thesis has been heavily modified or com-

pletely replaced and the author also introduced several original components. The

experiments and particle-tracking presented in this thesis have all been conducted

solely by the author. Analysis of the data is conducted by the author under the su-

pervision of Daniel Lathrop with additional support for theoretical models provided

by Michael E. Fisher. Katepalli Sreenivasan has played an advisory role as well and

commented on the published manuscripts pertinent to the work detailed here [3–6].

We present a more extensive discussion of the relevant theoretical background

in Chapter 2. Details of the experimental apparatus and visualization technique

are described in Chapter 3. The mechanism by which particles may be trapped on

quantized vortices in He II is discussed in Chapter 4. Since particles interact with

both the normal fluid and the quantized vortices, we also discuss the relevant factors

that determine whether particles will trap on vortices or only follow the normal fluid

and present novel experiments showing the transition between the two regimes. The

visualization technique allows us to directly observe the two-fluid nature of He II

for the first time in the thermal counterflow experiments presented in Chapter 5.

We present the first observations of quantized vortex reconnection in He II and two

separate models that characterize the dynamics in Chapter 6. The local dynamics

of quantum turbulence and its distinctions with classical turbulence are described

in Chapter 7. We conclude in Chapter 8 and discuss potential future directions

of inquiry. Appendix A includes codes that are used in to analyze the data and

Appendix B contains tables of pertinent raw data.
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1.1 Turbulence

Turbulent processes are ubiquitous on Earth and throughout the observable

universe. Turbulence provides crucial mechanisms necessary to sustain life on Earth

by, for example, transporting spores of plants across land, nutrients, heat and salin-

ity in the oceans and various gases in the atmosphere. Turbulent motions of molten

iron in Earth’s core produce the magnetic field used for navigation as well as pro-

viding a barrier to potentially harmful charged particles emitted by the sun. To the

layperson, more familiar experiences with turbulence might be found on disturbing

airplane flights, the aesthetic patterns and motions of clouds or the ebb and flow of a

rushing river. In addition to these naturally-occurring phenomena, turbulence plays

a vital role in the design and operation of many industrial processes. In chemical

mixers, turbulence is used as a tool to increase efficiency whereas it is suppressed in

pipe flows to reduce pumping costs.

Despite the abundant examples of turbulence, there is no consensus definition

of the term. Here, we will define turbulence as a field that is spatially-complex,

aperiodic in time, and involves processes spanning several orders of magnitude in

spatial extent and temporal frequency. Therefore, turbulence by this definition is

not restricted to fluid motions alone. The human heart, for example, undergoes

filament turbulence immediately before fibrillation [7], magnetohydrodynamic tur-

bulence dominates the behavior of many astrophysical bodies [8–10] and electro-

magnetic waves in laboratory plasmas may also be turbulent [11].

The important interplay between large and small scales in turbulent fields has
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made the study of such systems particularly difficult owing to the need to resolve

several orders of magnitude in spatial and temporal extent. For the experimentalist

this requires large experiments that are also capable of observing very fast fluctua-

tions on microscopic to mesoscopic scales. For theoreticians the equations of motion

are always nonlinear and extremely difficult to work with because individual terms

in the equations couple large- and small-scale motions. Furthermore, owing to the

vast span of scales involved in the problem, terms in the equations of motion can-

not simply be neglected because the contribution from each may vary greatly over

the relevant scales. As such, numerical simulations of experimental and naturally-

occurring systems require extremely large simulation domains that are also capable

of resolving the small scales dominated by dissipation.

The pioneering work of Kolmogorov [12, 13] remains the cornerstone of the

statistical theory of turbulence in classical fluids. Kolmogorov made two key as-

sumptions: (1) local isotropy and homogeneity prevail, and (2) there exists an

inertial range in which turbulent energy is transferred from large to small scales

independent of viscosity and generation mechanisms. Dimensional arguments then

yield the spectral density

E(k) = cK ε̄
2/3k−5/3, (1.1)

where ε̄ is the average energy dissipation rate per unit mass and cK is the universal

Kolmogorov constant. While experiments have found the effects of intermittency to

be important for high-order moments, the correction to the spectral form is quite

small. Kolmogorov also hypothesized that for sufficiently intense turbulence the
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statistics of small-scale motions are universally and uniquely determined by the mean

energy dissipation rate ε̄ and the kinematic viscosity of the fluid ν. Dimensional

arguments stemming from this hypothesis yield a single length scale

η =

(
ν3

ε̄

)1/4

, (1.2)

which is referred to as the Kolmogorov length. On scales comparable to η viscosity

homogenizes the flow and dissipation converts mechanical energy into heat.

To summarize the importance and difficulty of studying turbulence we will

appeal to two famous quotes on the subject: the first is given by Richard Feynman

who stated

“Turbulence is the most important unsolved problem of classical physics.”

The second is from Horace Lamb who is quoted as saying

“I am an old man now, and when I die and go to heaven there are two

matters on which I hope for enlightenment. One is quantum electrody-

namics, and the other is the turbulent motion of fluids. And about the

former I am rather optimistic.”

In this thesis we endeavor to further the understanding of this extremely broad field

of study by directly visualizing fundamental, turbulent processes in a quantum fluid.

1.2 Turbulence in Quantum Fluids

Quantum fluids, put simply, are fluids that are constrained by quantum-

mechanical effects. Such fluids are typically described as two interpenetrating fluids:
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a viscous normal fluid akin to water and an inviscid superfluid exhibiting long-

range quantum order. Each component has a distinct velocity field {vn, vs} and

temperature-dependent density {ρn, ρs} for the normal and superfluid components,

respectively. There is no conventional viscous dissipation in the superfluid com-

ponent; rather the flow of a superfluid is similar to the resistance free motion of

electrons in a superconductor.

Turbulence can arise in either or both of the fluid components. Turbulence

in the normal fluid appears to be indistinguishable from turbulence in classical flu-

ids such as water. Turbulence in the superfluid component, though, is dominated

by quantum-mechanical constraints. Specifically, vorticity is constrained to the

atomically-thin cores of vortex filaments. Quantum mechanics requires the circula-

tion around each vortex filament to be quantized and given by an integer multiple

of κ = h/m, where h is Planck’s constant and m is the mass of a fluid atom. Tur-

bulence then in the superfluid component exhibits a complex, interacting tangle of

quantized vortices as initially imagined by Feynman [14].

The relevant length scales of a quantum turbulent state have a lower threshold

given by the diameter of a quantized vortex core (∼ 10−8 cm) and an upper bound of

the system size or at least many times the typical intervortex spacing (∼ 1 cm). The

slowest time-scales are typically produced by long-range vortex-vortex interactions,

which are on the order of 1 s, while the fastest are wave motions along the quantized

vortices with periods less than 10−9 s [15]. These waves are transverse, circularly

polarized displacements that are restored by vortex tension produced by the kinetic

energy per unit length of a quantized vortex. Such “Kelvin waves” along a rectilinear
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vortex have an approximate dispersion relation given by [15]

ω =
κk2

4π

[
ln

(
1

ka0

)
+ c

]
, (1.3)

where a0 is a vortex cutoff parameter and c ≈ 1. Evidently, a quantized vortex

tangle involves the interaction of a wide breadth of spatial and temporal scales, as

required for the system to be called turbulent.

Additional complications arise from interactions between the normal and su-

perfluid components mediated by the quantized vortices. Since the two fluids couple,

turbulence in one is capable of triggering turbulence in the other. A consensus on

the coupled equations of motion for the two fluid components still evades theoreti-

cians, although several propositions have been made. One approach is to describe

the normal fluid with the Navier-Stokes equation [16], which is the standard equa-

tion of motion used for Newtonian fluids, and the Gross-Pitaevskii equation for the

superfluid component [17, 18], which involves a complex field and is applicable for

superfluids at T = 0 K. To each equation coupling terms are added to describe

the mutual friction between the two fluids, as initially observed and described phe-

nomenologically by Vinen [19–21].

1.3 Comparing Classical Fluid and Quantum Fluid Turbulence

Despite the fundamental differences between classical fluids and quantum flu-

ids, there have been notable studies since 1992 demonstrating similarities between

quantum and classical turbulence [18, 22–30]. Experiments by Maurer and Tabeling

on turbulence generated in 4He by two counter-rotating disks observed Kolmogorov
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energy spectra typical of classical fluids that were indistinguishable above and below

the superfluid transition [26]. The Kolmogorov energy spectrum was also seen by

Kobayashi and Tsubota in numerical simulations of the Gross-Pitaevskii equation

with small-scale dissipation added to the otherwise energy-conserving dynamics [18].

The classical decay of vorticity [23] has been observed in towed grid [23, 27], thermal

counterflow [29], and impulsive spin down [30] experiments using superfluid 4He.

1.3.1 Energy Cascades

Turbulence in both systems is often described as an energy cascade mediated

by nonlinear interactions from large scales to small scales where dissipation pre-

vails [12, 13]. In classical fluids this takes the form of a “Richardson cascade” [31]

whereby energy is injected at small wavenumbers k, which spawn larger wavenumber

structures through inertia until k grows sufficiently large that the energy is lost to

viscous heating. However, one should not picture large vortices or eddies spawning

smaller ones, since this has never been observed. Rather the correct picture is that

large eddies (small k) interact with one another producing small-scale structures

(large k) with high strain and shear that dissipate energy.

The cascade process is quite different for quantum fluids since all of the vortex

cores are atomically-thin and there are no viscous losses [32]. The conventional

picture for the quantum turbulent cascade is as follows: (i) bundles of nearly-parallel

quantized vortices form through interactions with the normal fluid that tend to align

them. These bundles produce large-scale motions similar to small wavenumber
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(large spatial extent) eddies in classical fluids. (ii) Energy is transmitted to larger

k via reconnections between individual vortices, which is described in Section 2.5.

(iii) Reconnection events trigger polychromatic helical, Kelvin waves on the vortex

lines. (iv) The Kelvin waves interact nonlinearly producing even larger wavenumbers

until they lose energy to phonon emission, which radiates energy to the boundaries

[15]. It is important to note that aspects of the quantum turbulent cascade remain

controversial and this is an active area of research and debate.

1.3.2 Large-Scale Motions

Large-scale motions in classical fluid turbulence typically refer to eddies and

other coherent structures that are much larger than length-scales where molecular

diffusion converts mechanical energy into heat. These large-scale motions contain

much of the kinetic energy of the system, which then cascades to smaller scales

through a nearly inviscid, inertial mechanism [12, 13] described in the previous sub-

section. In addition to their dynamical relevance, large-scale motions in classical

fluids can produce amazingly aesthetic phenomena that are commonplace in every-

day life such as patterns in rising steam from a tea kettle or smoke from a fire,

vortical structures in sink drains and mixing gradients between hot coffee and cool

creamer. One example of such phenomena, known as the von Kármán vortex street,

is shown to occur in experimental and natural environments in Fig. 1.1. It is quite

remarkable that images taken from a controlled, table-top experiment share such

resemblance to clouds in Earth’s extremely complicated atmosphere.
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Figure 1.1: Example images of the von Kármán vortex street and wing-
tip vortices. (a) Experimental image of the flow of water from right to
left past a cylindrical obstacle shown as the black semicircle on the right
edge of the image. This image was taken from http://wikipedia.org.
(b-c) Satellite images of clouds showing strikingly similar behavior to
the controlled experimental conditions in panel (a). The images in (b)
and (c) were taken from http://wikipedia.org and http://alg.umbc.edu,
respectively. (d) Vortex formation behind a Cessna airplane taken from
http://www.diam.unige.it. These vortices are known as wing-tip vor-
tices.
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The nature of large-scale motions in quantum fluids would appear to bear no

analogy to classic fluids since vorticity in the superfluid component does not diffuse

and is incapable of forming such coherent structures. However, it is possible for

groups of quantized vortices to mimic large-scale circulations common in classical

fluids. As a simple example, we will consider the case of a fluid contained in an

infinitely-long, cylindrical vessel that rotates at a constant angular velocity about

its vertical axis such that Ω = Ωẑ. If the fluid inside the vessel is classical then

it will eventually reach a state of solid-body rotation where every fluid element

rotates about the z−axis at a frequency Ω. This flow yields a simple velocity field

v = Ωsφ̂, where s is the cylindrical radius and φ the azimuthal coordinate, with

vorticity equal to ω = ∇×v = 2Ωẑ. Since vorticity in a quantum fluid is quantized,

it is clear that many quantized vortices aligned parallel to the z−axis are required

to produce a similar course-grained velocity field to the classical case. The flow

around each quantized vortex, though, is given by v = φ̂κ/(2πs); this is at odds

with the velocity field for solid-body rotation, which grows linearly with s rather

than decaying. These complications can be overcome if the quantized vortices are

arranged in a regular lattice, with a triangular lattice producing the lowest energy

state, as depicted schematically in Fig. 1.2. Feynman first calculated this triangular

arrangement as the lowest energy approximation to solid-body rotation. This lattice

structure has been observed experimentally in superfluid 4He [33], and analogously

in superconductors [34] and Bose-Einstein condensates [35] as shown in Fig. 1.3.

It is therefore possible both in principle and in practice for quantized vortices

to closely approximate the large-scale flows of classical fluids. This approximation
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Figure 1.2: Schematic diagram of a superfluid in a cylinder uniformly
rotating with Ω = Ωẑ (a) as viewed from above and (b) as viewed from
the side. The quantized vortices (black dots or lines) align with the
axis of rotation and form a triangular lattice as first calculated by Feyn-
man [14]. The resulting course-grained flow closely approximates the
analogous situation in a classical fluid even though quantum mechanics
imposes stringent constraints on vorticity.
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Figure 1.3: Experimental visualizations of vortex lattices in (a) super-
fluid 4He (Yarmchuk et al. [33]), (b) Bose-Einstein condensates (Abo-
Shaeer et al. [35]) and (c) superconductors (Hess et al. [34]). The
locations of the vortex cores are shown in white in (a) and black in (b)
and (c). The progression of twelve images a–l in (a) shows the increase
in the number of vortices as the rotation rate of the system is increased.
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is only applicable, though, on length-scales much larger than the typical spacing

between quantized vortices. In all of the quantum turbulence studies mentioned

above ([18, 22–30]) that observed similarities to classical turbulence, the flow scales

observed were considerably larger than typical intervortex spacings. These results

may be attributed to the fact that on such scales the pairwise interactions of quan-

tized vortices are insignificant while the normal and superfluid components become

“locked” as a result of mutual friction, which is discussed in Section 2.3.

1.3.3 Small-Scale Motions

Small-scale motions in classical turbulence are drastically different from those

in quantum fluids. In classical fluids, small-scale motions take place over length-

scales comparable with the Kolmogorov length η defined in (1.2) [12, 13], below

which viscosity smooths the flow. Even though local quantities undergo intermittent

bursts and are nonuniform in both space and time, viscosity diffuses momentum and

homogenizes mean quantities on dissipative length-scales.

We consider small-scales in quantum fluids as bounded above by the typical

spacing between quantized vortices, which we will define as l. As mentioned in the

previous subsection, on scales much greater than l it is assumed that the interactions

between quantized vortices are negligible. Vorticity in the superfluid component

cannot diffuse, rendering it incapable of homogenizing even on atomic length-scales.

For scales below l, vorticity in a quantum fluid undergoes extreme fluctuations

since it is topologically constrained to dynamic, line-like filaments, thereby bearing
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no resemblance to a classical fluid observed on scales comparable to η. The local

interactions between quantized vortices, such as reconnection and ring collapse,

can produce very large velocities bounded only by the speed of sound of the fluid.

Consequently, it is generally accepted that the small-scale dynamics of quantum

turbulence and classical turbulence are quite different.

1.3.4 Heat Transport

Heat applied to the bottom of a classical fluid system may be transported by

two different means depending upon the Rayleigh number Ra, which compares the

driving forces from the imposed heating to diffusive effects. For small values of Ra,

heat is carried entirely by thermal conduction through a stationary fluid. Above a

critical value of Ra, buoyancy forces grow sufficiently large that Rayleigh-Bénard

convection ensues as depicted in Fig. 1.4 [36]. First, warm, positively-buoyant fluid

at the heated bottom flows along one side of the system towards the top where it

then begins to cool. Then, cooler, negatively-buoyant fluid displaces the rising, warm

fluid by sinking down along the opposite side of the system where it then begins

to heat and expand. These processes form a cycle with warm fluid always rising in

some region of the system and cool fluid always sinking to conserve mass in another.

The resulting flow greatly enhances the transport of heat through the system as

compared to thermal conduction alone. Convection is an essential component to

turbulence in the molten iron core of Earth, oceans and planetary atmospheres as

well as stars.
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Figure 1.4: Example trajectory of a temperature-sensitive tracer particle
from a Rayleigh-Bénard convection experiment that is heated from below
and cooled from above. The axes give the position of the tracer particle
and color denotes the temperature in ◦C. The large-scale circulation is
evidenced by the warm fluid rising along the right-side of the apparatus
(red lines) and the sinking, cooler fluid (blue lines) along the left edge
of the system (from Gasteuil et al. [36]).
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The two-fluid nature of quantum fluids results in a very different heat transfer

mechanism [37, 38]. The superfluid component resides in the ground state of the

system and therefore cannot carry entropy or convey heat. All of the heat must

be transferred through the system by motions of the normal fluid. If a superfluid

is heated at the bottom of a closed channel in analogy to the classical fluid case

described above, then the normal fluid will flow away from the heat source, while

the superfluid component will flow towards the heat source to conserve mass. Since

the two fluids are interpenetrating, there is no need for the normal fluid to rise

along one side of the system and the superfluid to sink along the other as shown

for the classical fluid case in Fig. 1.4; rather, on average the normal fluid flows

upward everywhere in the system and the superfluid flows towards the heat source

everywhere to conserve mass. This flow state is often referred to as a thermal

counterflow and in Chapter 5 we present the first direct observation of these two-

fluid motions. It is important to note that thermal counterflows are not driven

by buoyancy, in contrast to Rayleigh-Bénard convection. Any arbitrary heat flux

q = qq̂ will produce a normal fluid velocity aligned with q̂ and a superfluid velocity

anti-aligned.

Thermal counterflows transport heat ballistically, which is much more efficient

than even the enhanced convective transport of heat by Rayleigh-Bénard convec-

tion. Indeed, experiments attempting to measure the thermal conductivity of a

superfluid require long, thin capillary tubes in order to even produce a measurable

temperature gradient on the order of 1 mK/m. Experimentally determined values

of the thermal conductivity of superfluid 4He are 107 times greater than its classical
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counterpart above the superfluid transition temperature and 800 times greater than

copper at room temperature [39]. This unique means of heat transfer in superfluids

has found applications in environments requiring advanced cooling abilities such as

superconducting magnets used to accelerate particles in research colliders.

1.4 State of Quantum Turbulence Research

In this section, we seek to summarize some of the recent achievements and

shortcomings of quantum turbulence research. The breadth of research requires us

to only highlight a select few areas of endeavor. Here, we will focus only on superfluid

4He, since it is the main topic of this thesis. For a more extensive discussion we

suggest the review article by Vinen and Niemela [40].

1.4.1 Experimental Challenges

Performing turbulence experiments in He II presents all of the challenges of

classical turbulence with several additional complications. The boiling point of

classical liquid helium (He I) at 1 atm is 4.2 K, and at saturated vapor pressure

He II exists only at temperatures below 2.18 K. These low temperatures coupled

with the low heat of vaporization of liquid helium (100 times smaller than liquid

nitrogen) require experiments to be conducted in vacuum insulated cryostats. Wall-

shear stress sensors and hot-wire probes, commonly used in classical fluids, measure

the amount of heat required to maintain the sensor at a constant temperature. Since

the thermal conductivity of He II is 800 times larger than solid copper, very large
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heat fluxes that would drive spurious counterflows in the system would be required

to detect a signal.

Probes that measure dynamic pressure fluctuations are also commonly used in

classical fluid experiments. The size of the probe is designed to be no larger than the

length-scales of interest and ideally are smaller than the Kolmogorov length-scale η.

As discussed in Section 1.1, turbulent flows are composed of fluid motions on length-

scales spanning several orders of magnitude. Fixing the typical fluid velocities in the

system, the turbulent intensity in an experiment can be increased toward naturally-

occurring levels of interest by either: (i) increasing the largest scale of the fluid

motions by increasing the system size or (ii) by decreasing the smallest scales of

the flow by using a lower viscosity fluid. Liquid helium has the lowest kinematic

viscosity of any fluid thereby yielding very small dissipative length-scales. The

Kolmogorov length-scale for experiments conducted in He I [41] are typically on the

order of only 10 μm. Turbulence in He II produces even smaller length-scales in the

normal fluid and dynamics in the superfluid component can occur on atomic length

scales. Pressure probes sufficiently small to detect even the small-scale motions of

the normal fluid are presently unavailable. Even if probes were available the exact

role of pressure in quantum turbulence is still unknown, so interpretations of such

measurements would be less concrete than similar measurements in classical fluids.

The most common and important method of studying classical turbulence

stems from directly visualizing the flow. Whether it be tracer particles or dyes,

adding impurities into classical fluids that scatter light allow the observer to see the

motions of the fluid, such as in Fig. 1.1. Even though all impurities will undergo
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trajectories different than the fluid elements of interest, deviations between tracer

particles and fluid elements can be minimized through judicious choice of the par-

ticle properties. Specifically, neutrally-buoyant, spherical particles with diameters

comparable to or smaller than η are generally accepted as viable tracers [42]. The

density of liquid helium is an order of magnitude smaller than that of water. As

such, all tracer particles designed for studying turbulent flows in water produce un-

desirable systematic effects when used in liquid helium. Furthermore, the relevant

length-scales of the flow require tracer particles that are on the order of 1 μm or

smaller. Lastly, particles tend to aggregate owing to van der Waals forces; even

if the particles are initially small enough to serve as tracers, over time their mean

size will increase until they cease to be useful. This problem in water is countered

by coating the particles with surfactants. This approach fails in both He I and

He II, since “helio-philic” and “helio-phobic” surfactants have not been discovered.

Instead, we use micron-sized solid hydrogen tracers that have been shown to serve

as viable tracers for normal fluid motions [42] or may be used to mark the position

of quantized vortex cores [2] in He II. Therefore, for the first time, we are able to

visualize the dynamics of both the normal fluid and superfluid components in He II.

The technical challenges of implementing tracer particles in He II are further

compounded by the two-fluid nature of superfluids. Particles in He II are influenced

by both the normal fluid and the superfluid components. Specifically, it is possible

for the tracers to follow motions of the normal fluid as they would in water or they

can be trapped on the cores of quantized vortices [43] as we discuss in detail in

Chapter 3. Thus, visualizing the motions of particles in He II alone is insufficient;
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detailed models must accompany experimental data to determine the information

that may be gleaned from particle trajectories. Several models and numerical stud-

ies [44–48] describing the dynamics of tracer particles in He II have recently been

published, but quantitative experimental tests are lacking. We present detailed ex-

perimental observations and our interpretations of tracer particle motion in He II

in Chapters 4 and 5.

In spite of these challenges, many techniques have been developed to exper-

imentally probe turbulence in He II. The most common measurement is of the

spatially-averaged vortex line length density L [23, 27, 29, 30, 49] first introduced

by Vinen in 1957 [19–21], which is simply the total quantized vortex line length

per unit volume. Therefore, L has the units of inverse area (length/volume) and

κL, which has units of inverse time, is often regarded as the quantum analogue to

classical fluid vorticity. Measurements of the attenuation of second sound or elec-

trical current, coupled with theoretical interpretations, are used to determine L in

experimental settings. The vortex line length density L is often used as a measure

of the turbulent intensity in the superfluid component. As external forcing, whether

by mechanical means such as impellers and towed grids or by driving a thermal

counterflow, increases the steady-state value of L also increases. The clear coun-

terexample to this interpretation, though, is the case of uniform rotation since the

equilibrium state has L > 0 and typically quite large.

A great deal of progress has been made in the study of turbulent He II through

experiments and theories that focus on the properties of the vortex line length

density. Even though a great deal can be gleaned by measuring L, it is exceedingly

21



difficult to gain insight into the small-scale dynamics, the individual interactions

between quantized vortices and the dynamics of normal fluid. In short, L does not

yield the type of information that can be extracted by directly visualizing the flow

as is so often done in classical fluids. This serves as a major motivation for our

direct visualization studies that permit us to examine the local dynamics of both

the normal fluid and superfluid components in He II. We have the ability to see

quantized vortices interacting, the two-fluid nature of the flow, the motion of vortex

rings, and coupling between the normal fluid and superfluid components for the first

time. Our experiments provide tests for many long-standing hypotheses while also

initiating future directions of inquiry.

1.4.2 Theoretical and Computational Challenges

Performing numerical simulations of any turbulent system is a great challenge

owing to the extent of spatial and temporal scales of relevance, as discussed in

Section 1.1. The two-fluid nature of He II requires simulations to take into account

the complex motions of the normal fluid component, as in any simulation of a

classic fluid, while also incorporating the dynamics of the superfluid component

and coupling between the two fluids. Unlike classical fluid turbulence, there is no

consensus on well-tested equations of motion for He II, resulting in many simulations

of distinct equations.

Since the study of turbulence in He II provides challenges in addition to those

present for studying classical fluid turbulence, many numerical simulations are re-
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stricted to turbulence in the superfluid component alone. These studies initiated

by Schwarz in 1978 [50] and extended by Tsubota, Nemirovskii and others [51, 52]

prescribe a fixed normal fluid velocity field or ignore it entirely and then simulate

the dynamics of a turbulent superfluid velocity field. More specifically, numerical

simulations typically begin with an initial distribution of quantized vortices within

the simulation domain and a fixed normal fluid velocity field that affects the quan-

tized vortices. These studies are referred to as line-vortex simulations since the

problem is reduced to following only the dynamics of the quantized vortices, which

are treated as one-dimensional.

Although this is a great reduction in complexity, several important difficulties

remain. The first is that the resulting superfluid velocity field from a given spatial

distribution of quantized vortices is given by a Biot-Savart type integral in analogy

to the magnetic field derived from a distribution of electrical current, which has non-

local effects. Fully computing these integrals greatly increases the computational

cost of the simulation. Many numericists prefer to assume the localized-induction

approximation (LIA) [51–54], which neglects all nonlocal contributions to the veloc-

ity field and greatly reduces the computational workload. This assumption allows

for simulations that contain a greater density of quantized vortices at the cost of a

restricted range of validity. Indeed, this approach has recently been questioned in

studies by Tsubota and his collaborators [55, 56] that compute the full Biot-Savart

integral.

The second shortcoming of vortex-line simulations stems from quantized vor-

tex reconnection [14]. Reconnection occurs when two quantized vortices are driven
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by their mutual velocity field to cross at a point, exchange tails, which results in a

different velocity field that drives them apart as discussed in detail in Subsection 2.5

below. In the naive implementation of vortex-line simulations, reconnections cannot

occur naturally. To compensate for this defect, numerical schemes implement spe-

cial algorithms to induce reconnection. One method is to always reconnect any two

vortices that are separated by less than a prescribed distance [53–56], while another

only reconnects vortices that appear to cross [52]. These distinct methods of re-

connecting vortices introduce systematic effects that are not yet clearly understood.

Furthermore, reconnection has a different impact on the turbulent state depending

upon whether or not the simulation assumes the LIA as recently discussed by Adachi

et al. [55].

A few numerical studies have separately investigated reconnection in He II. de

Waele and Aarts numerically simulated the dynamics of two vortex lines immediately

before a reconnection event [57] using line-vortex methods. However, the resulting

dynamics after the event were not computed. A study of the complete reconnec-

tion process was performed by Koplik and Levine [58] using the Gross-Pitaevskii

equation, which is thought to properly describe the dynamics of quantized vortices

at T = 0 K. In both of these studies, though, the entire simulation was composed

of only the two reconnecting vortices. Simulations of turbulent He II, on the other

hand, have employed many densely-packed quantized vortices as well as the normal

fluid, which is quite different than simulations of individual reconnection events.

The specific effects of a more turbulent environment on reconnection events have

yet to be studied. By contrast the observations we detail below, have characterized
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the dynamics of approximately 20,000 reconnection events in turbulent He II. One

may hope that these experimental observations will aid in a deeper understanding

of the vortex reconnection process that can be implemented in future numerical

simulations of turbulent He II.
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Chapter 2

Theoretical Background

This chapter seeks to provide the theoretical background that is necessary to

understand the experimental results presented in the forthcoming chapters. It begins

with a description of the discovery of superfluidity in He II for both its historical

significance and so that we may introduce some of the amazing properties of He II.

We then discuss the two-fluid model attributed to Tisza [37] and Landau [38]. The

quantum mechanical constraint on fluid circulation, which gives rise to quantized

vortices, is discussed in section 2.3. In addition to introducing quantized vortices, we

also discuss their dynamics and interaction with the normal fluid. A more detailed

discussion of thermal counterflows follows and we end this chapter with details

regarding reconnection, which occurs in a wide variety of systems including He II.

2.1 Discovery of Superfluidity

The more naturally-abundant isotope of helium, 4He, was first liquified by

Heike Kamerlingh Onnes at the University of Leiden in the Netherlands in 1908.

This was a great achievement since 4He at atmospheric pressure must be cooled

to 4.2 K before it will condense into a liquid state. By that time it was quite

commonplace to liquefy gases and study their properties. In fact, helium was the last

gas to be liquefied since it has the lowest boiling point of any element, and perhaps
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even more remarkably, elevated pressures (> 25 atm) are required to solidify helium

even at absolute zero.

As scientists continued characterizing various properties of liquid helium, as

had been done for many other liquids, they began to notice anomalies in quantities

such as the density and specific heat near T = 2.2 K. In the late 1920s, Keesom et al.

[60] had observed a sharp peak in the specific heat near T = 2.2 K that resembled

the shape of the Greek letter λ (see Fig. 2.1), hence the name “lambda-transition,”

which occurs at a temperature denoted Tλ. For temperatures T > Tλ, Keesom called

the liquid “helium I” (He I) and for T < Tλ he referred to the fluid as “helium II”

(He II) as shown in the phase diagram in Fig. 2.2. In 1930 Keesom also discovered

that He II could flow through very tiny pores that blocked He I [61]. McLennan,

Smith and Wilhelm in 1932 observed vigorous boiling of 4He as T → Tλ by using a

transparent glass cryostat, but the more startling phenomenon they observed was

that the boiling completely ceased for all temperatures below Tλ. An example of

this striking disparity in behavior is shown in Fig. 2.3. Soon afterward this behavior

was attributed to an exceptionally large thermal conductivity of He II as measured

by Keesom et al. [39, 62] and Allen et al. [63].

At the time, researchers believed the anomalously large thermal conductivity

must be caused by convection or turbulence in the fluid. Thus, they set out to

measure the viscosity of liquid helium, particularly its temperature dependence near

Tλ. Wilhelm et al. were the first to observe a dramatic decrease in the viscosity of

liquid helium below Tλ by measuring the damping of an oscillating cylinder immersed

in the fluid [65]. However, the breakthrough came in successive articles in 1938 in the
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Figure 2.1: Plot of the accepted values of the heat capacity CS as a
function of temperature T measured from the transition temperature Tλ
[59]. The specific heat anomaly is evidenced at T − Tλ = 0.
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Figure 2.2: Phase diagram for 4He near the λ-transition [64]. The inter-
section of the liquid-gas coexistence curve and the He I – He II curve is
defined as the λ-point, which occurs at Tλ = 2.17 K.
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Figure 2.3: Two images from a film by J. F. Allen and J. Armitage
of heated 4He for two distinct temperatures. (a) He I at T = 2.4 K
and (b) He II just below the λ-transition temperature Tλ. The thermal
conductivity of He I is very poor, which produces the vigorous boiling
evidenced by the bubbles in (a). He II, though, has a a much higher
thermal conductivity, which homogenizes the temperature causing the
boiling to cease.
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journal Nature. The measurements by Wilhelm et al. were questioned since it was

not clear if the flow around the oscillating cylinder was laminar or turbulent. In an

attempt to obtain laminar flow, which would make measurements of the viscosity

more reliable and accurate, two experimental groups observed the flow of He II

through very thin, long capillary tubes. In the first, Kapitza estimated that the

upper bound for the viscosity of He II was ∼ 10−9 P, which is 107 times smaller

than the viscosity of water and 104 times smaller than any viscosity measured to

that point in history [66]. He remarked:

“The present limit is perhaps sufficient to suggest, by analogy with

supraconductors, that the helium below the λ-point enters a special state

which might be called a ‘superfluid.’”

On the very next page of the journal, Allen and Misener obtained a consistent upper

bound of 4× 10−9 P for the viscosity of He II by performing similar measurements

[67]. The authors commented:

“The observed type of flow, however, in which the velocity becomes

almost independent of pressure, most certainly cannot be treated as

laminar or even as ordinary turbulent flow. Consequently any known

formula cannot, from our data, give a value of the ‘viscosity’ which would

have much meaning. It may be possible that the liquid helium II slips

over the surface of the tube. In this case any flow method would be

incapable of showing the ‘viscous drag’ of the liquid.

. . . It seems, therefore, that undamped turbulent motion cannot
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account for an appreciable part of the high thermal conductivity which

has been observed for helium II.”

These two main conclusions of these experiments: (i) the flow of He II may bear

analogy with superconductivity owing to the immeasurably small viscosity and (ii)

the efficient transport of heat through He II could not be explained by turbulent

convection common to all other fluids, truly sparked a great deal of interest in He II.

Only one month after these amazing discoveries, Allen and Jones also reported in

Nature yet another extremely peculiar effect present only in He II [68]. The exper-

imentalists were preparing a modified apparatus to extend studies of the viscosity

of He II when the following observation was made:

“Observations were being made on the flow of liquid helium II through

a tube packed with fine emery powder (Fig. 2). The top of the tube was

allowed to project several centimetres above the level of the liquid he-

lium bath, and an electric pocket torch was flashed on the lower part of

the tube containing the powder. A steady stream of liquid helium was

observed to flow out of the top of the tube as long as the powder was

irradiated.”

The original figure from the paper by Allen and Jones is shown in Fig. 2.4 along with

a clearer portrayal of the phenomenon. The original photograph was taken using a

60 W light bulb for illumination, which also provided the radiant thermal energy

absorbed by the powder that drove the “helium pump.” Allen and Jones reported

observing jets as high as 16 cm above the tip of the capillary tube. The rapid pace
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Figure 2.4: Images of the thermo-mechanical “fountain effect.” The im-
age on the left is from the initial observation reported by Allen and Jones
in 1938 [68]. The image on the right is taken from nature.com. Both
images show a jet of He II exiting from the top of a tube that resides
above the free surface of the liquid. The flow is driven thermally by the
absorption of heat at the bottom of the tube. This phenomenon was
later explained by the two-fluid model of Tisza [37] and Landau [38].
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of experimental discoveries in He II was soon followed by theoretical breakthroughs

discussed in the next section.

2.2 Two-Fluid Model

Only months after the analogy between the low viscosity flow of He II and

the resistance-free motion of electrons in superconductors was put forth by Kapitza

[66], London stated that the λ-transition in 4He was analogous to Bose-Einstein

condensation in dilute gases [69]. London calculated a transition temperature for

an ideal Bose gas of T = 3.09 K. This is higher than the observed value of Tλ,

but it is expected that the interactions of the helium atoms that make it nonideal

will result in a lower transition temperature. Even though the relationship between

Bose-Einstein condensation and superfluidity is quite subtle and still debated, this

initial idea by London led to future theoretical achievements.

Tisza was afforded the opportunity to read London’s paper before it was pub-

lished and followed it up with one of his own a month afterward. Tisza began with

London’s hypothesis [37]:

“F. London has recently proposed a new conception of helium II,

according to which this liquid can be regarded as a degenerate Bose-

Einstein gas, that is, as a system in which one fraction of the substance

– say, n atoms per cm3 – is distributed over the excited states in a way

determined by the temperature, while the rest — n0−n atoms per cm3 —

is ‘condensed’ in the lowest energy level. If T0 denotes the temperature
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of degeneracy, the ratio n/n0 is given by n/n0 = (T/T0)
s for T < T0.”

Thus, Tisza was putting forth the idea that He II could be considered as partially

composed of atoms in an excited state and condensed atoms that would behave

coherently.† He used this idea to make arguments for the rapid decrease in the

viscosity of He II with temperature by stating:

“A preliminary estimation shows that the atoms belonging to the

lowest energy state do not take part in the dissipation of momentum.

Thus, the viscosity of the system is entirely due to the atoms in excited

states.”

Since the fraction of atoms belonging to the ground energy state (condensed atoms)

grows as the temperature is decreased and they do not contribute to dissipation,

the viscosity must also decrease with temperature. Tisza explained the remarkably

high flow velocities observed in thin capillary tubes by proposing that the condensed

atoms will behave like a “superfluid” that can flow with essentially zero viscosity

while the excited atoms would be blocked or would at best diffuse like a solution un-

der an osmotic pressure gradient. This concept explained the different experimental

values of viscosity measured in open geometries (an oscillating cylinder immersed

in a bath of He II), where the excited atoms could easily flow, as compared to con-

fined geometries (thin capillary tubes), where the flow of excited atoms is greatly

†The author would like to stress that the division of He II into “normal” atoms residing in

excited states and “superfluid” atoms condensed into the ground state is only amodel that provides

a convenient description of many of the observed phenomena. The two-fluid model does not

constitute a microscopic theory of He II.
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restricted. In accord with the idea that the fraction of condensed atoms changes

with temperature Tisza made the following prediction:

“Thus, the total flow represents a rather complex combination of both

these effects. It will largely depend on the ratio (n0−n)/n and, therefore,

on T , in agreement with experiment. According to this interpretation, a

temperature gradient should arise during the flow of helium II through

a thin capillary.”

The experimentalists had not reported the observation of a temperature gradient

along the capillary tube. However, Tisza made this testable prediction, which later

would prove to be true. He used this very argument to explain the otherwise inex-

plicable “fountain effect” that had been observed only months before by Allen and

Jones discussed above [68] in the following manner:

“If one maintains a temperature difference between the ends of a

capillary, a gradient of density of excited atoms, n, and, thus, of pressure

is produced. In consequence, (a) the excited atoms will diffuse towards

the colder end, and (b) the super-fluid fraction of the liquid moves in the

opposite direction. In the case of a wide tube, these currents must be

equal and no resulting flow will be observed. If, however, the capillary

is sufficiently narrow, the rate of the process (a) becomes reduced and

the temperature gradient causes a surplus convection current opposite

to heat flow.”

These few sentences were the first to conceive of a thermal counterflow as mentioned
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in Subsection 1.3.4 and discussed in greater detail in Section 2.4. Thermal coun-

terflows have no classical analogue and they form an invaluable cornerstone of past

He II research as well as an active area of study today (the entirety of Chapter 5 of

this thesis is dedicated to our contributions to thermal counterflow research).

Landau followed up the pioneering work of Tisza with a much more detailed

microscopic picture of the two-fluid nature of He II [38]. Landau did not find

the degenerate Bose gas description of He II adequate and instead developed his

own theory that extends the qualitative two fluid ideas of Tisza. Landau sought

a hydrodynamic description of He II that characterized states of the fluid rather

than only considering individual atoms. The first very important idea put forth

in his theory was that arbitrary values of vorticity were not possible in a quantum

liquid. He posited that there must be an energy gap Δ between the case of potential

flow (zero vorticity) and vortex motions in the fluid. Landau discussed elementary

excitations as being composed of two branches: phonons, which are the standard

longitudinal sound waves in the fluid, and rotons which are elementary excitations

of the vortex spectrum. At T = 0, Landau stated that the flow of He II would

not dissipate energy so long as the velocity was below two minima. Since there

is an energy gap Δ to produce any vortex motions, rotons can only be excited for

velocities v > (2Δ/μ)1/2, where μ is the effective mass of a roton. Similarly, phonons

could only be produced for v > c, where c is the speed of sound in the fluid.

At temperatures above absolute zero, excitations must be present. Landau

considered the case of a rotating vessel of He II and envisioned that only part of

the liquid would be dragged along by the walls while the other part would remain
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stationary. This, he then regarded, could be considered as He II being composed of a

mixture of two liquids — one a zero viscosity “superfluid” and the other a “normal”

fluid. Landau stated that these two fluids could pass through one another without

any exchange of momentum. This concept is almost true — Vinen discovered a

“mutual friction” between the two fluids in 1957 [19–21], which is briefly discussed

in the next section. It is important to note, as Landau himself pointed out, that one

should not imagine that some helium atoms are normal and others are superfluid; it

is not possible to separate the normal fluid and superfluid components of a quantum

fluid. This is simply used as a convenient tool to describe the various phenomena.

Landau then outlined the standard two-fluid concepts that are still used today.

The density of the fluid ρ is given by ρ = ρn + ρs, where ρn is the normal fluid

density and ρs is the superfluid density, which both depend upon temperature. At

T = 0, the excitations must completely vanish resulting in ρn/ρ = 0. For T > 0,

0 < ρn/ρ ≤ 1 with the fraction of normal fluid equal to unity only above Tλ (see

Fig. 2.5). Furthermore, everywhere in the fluid there are two velocities — vs and

vn, which correspond to the superfluid and normal fluid components, respectively.

The superfluid component resides in the ground state of the system, which

has zero entropy, and therefore it cannot carry heat. Landau concluded from this

fact that any motion of the superfluid component alone must be thermodynamically

reversible. Furthermore, if He II flows through a restricted geometry, such as a thin

capillary tube, only the superfluid component is able to slide along the boundaries

without friction. As Tisza also predicted, the helium that flows out of the restricted

geometry should be at a lower temperature than the initial vessel of He II. Landau
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Figure 2.5: Plot of the normal fluid fraction (red curve) and superfluid
fraction (black curve) [59]. Above the transition temperature Tλ, only
normal fluid is present. As the temperature is decreased through Tλ the
fraction of normal fluid monotonically decreases until only superfluid is
present at T = 0 K.
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put Tisza’s initial comments regarding the flow of heat into his precise two-fluid

context: any thermal gradient in the fluid will drive two currents — the normal

fluid will carry the heat away from the hot to the cold end and an antiparallel

current of superfluid will flow towards the heat source to conserve mass. Landau

pointed out that this would be a very efficient mechanism for transporting heat, as

had been observed in the aforementioned experiments [39, 62, 63].

Landau concluded this seminal work with the first macroscopic, hydrodynamic

equations of motion for a superfluid. Again taking ρ = ρn + ρs we have the flux of

mass given by,

j = ρsvs + ρnvn. (2.1)

The continuity equation,

∂ρ

∂t
+∇ · j = 0, (2.2)

expresses the conservation of mass. The law of conservation of momentum yields

∂ji
∂t

+
∂Πik

∂xk
= 0, (2.3)

where Πik = Pδik+ρnvnivnk+ρsvsivsk is the momentum flux density tensor, which is

a generalization of Πik = Pδik + ρvivk appropriate for classical fluids where P is the

pressure. In this presentation Landau neglected the role of dissipative processes, so

the flow is thermodynamically reversible. Thus, the conservation of entropy is given

by

∂(ρS)

∂t
+∇ · (ρSvn) = 0, (2.4)

where S is the specific entropy (entropy per unit mass). We note that only vn enters

into this conservation law since entropy and heat are only carried by the normal fluid,
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so the flux of entropy per unit volume is given by ρSvn. Lastly, Landau assumed

that the viscous-free flow of the superfluid must be potential flow (∇× vs = 0) for

all times. This implies that the derivative of vs can be described as the gradient of

a scalar thus

∂vs

∂t
= −∇

{
φ+

v2s
2

− ρn
ρ
(vn − vs)

2

}
, (2.5)

where φ is the thermodynamic potential per unit mass. The precise form of the

scalar chosen stems from the law of conservation of energy and Galilean invariance;

a more detailed derivation of this scalar and all of the equations in this section are

presented in Chapter XVI of Ref. [70].

The boundary conditions of these two-fluid equations can differ from those of

a classical fluid. Since the normal fluid is viscous, the velocity component parallel

to any solid boundary v
‖
n must vanish at that boundary, as in a classical fluid.

The superfluid, though, is free to slip along solid boundaries owing to the lack of

viscosity. The perpendicular component of the mass flux j must also be zero at

any solid boundary. However, this does not imply that v⊥n = 0 or v⊥s = 0, since

the flow involves two independent velocity fields. Indeed, the heat transfer between

He II and a solid surface is executed by the boundary either emitting or absorbing

excitation quanta (normal fluid). The corresponding boundary condition requires

that only the heat flux perpendicular to a surface be continuous. If there is no heat

transfer between the boundary and the fluid then we recover the usual impenetrable

boundary conditions for any fluid, namely the perpendicular components of both vn

and vs vanish at the surface.
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The above two-fluid equations admit two sound velocities. The first wave

equation, describing what is now referred to as first sound, is given by

∂2P

∂t2
= u21∇2P, (2.6)

where u1 = (∂P/∂ρ)1/2 is the speed of first sound. This equation describes the

propagation of longitudinal sound waves with both fluid components moving in

concert, which is analogous to any classical fluid. The other wave equation describing

second sound is given by

∂2T

∂t2
= u22∇2T, (2.7)

where u2 = (TS2ρs/CSρn)
1/2

and CS is the heat capacity. The second-sound velocity

vanishes at Tλ since ρs → 0. These disturbances are waves of temperature, which are

not present in classical fluids. Second-sound waves have velocities vn = −ρsvs/ρn

and therefore the two fluid components oscillate with a π phase difference. Further-

more, the net mass flux j = ρsvs + ρnvn = 0, so the center of mass of any fluid

element remains stationary. In summary, first-sound waves are coherent oscillations

of both fluid components with vn = vs and j �= 0 and second-sound waves, unique

to quantum fluids, are temperature (entropy) oscillations with vn and vs π out of

phase and j = 0.
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2.3 Quantized Vortices and Dynamics

2.3.1 An example: Ferromagnetism

To aid in the introduction of quantized vortices in He II we will appeal to

the more familiar example of ferromagnetism. Many materials, such as iron, cobalt,

and nickel, undergo a spontaneous symmetry breaking, continuous phase transition

at their respective Curie Temperature (Tc). Above Tc, these materials behave as

paramagnets by weakly amplifying any external magnetic field but failing to remain

permanently magnetized in the absence of one. Below Tc, these materials become

ferromagnetic and obtain a permanent magnetic moment. Clearly describing such

systems only by their typical thermodynamic variables, such as temperature and

pressure, is insufficient to clarify the distinction between the states above and below

Tc. As such, additional variables, referred to as order parameters, are introduced

to describe the system. Order parameters are typically normalized to take on val-

ues between zero and unity with zero corresponding to complete disorder (typical

for temperatures greater than the corresponding transition temperature) and unity

where the order in the system has reached its saturated value.

In the example of ferromagnetism, the corresponding order parameter is the

magnetization M, which is a three-dimensional vector of the magnetic field pro-

duced by the system of interest. Ferromagnetic materials are composed of atoms or

molecules that have magnetic moments produced primarily by electron spin. Above

Tc, the system has enough thermal energy to randomize the individual magnetic

moments as shown schematically in Fig. 2.6(a). Computing the vector sum of the
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individual, randomly-oriented magnetic moments yields zero net magnetization in

physical samples owing to the vast number (within a few orders of magnitude of

Avogadro’s number ∼ 1023) of individual magnetic moments. Therefore, the system

is completely disordered as described by the zero value of the order parameter.

Below the ferromagnetic transition temperature Tc, random regions of common

magnetization form, separated by domain walls that preserve some of the disorder

in the system (Fig. 2.6(b)). The magnetic domains are composed of aligned mag-

netic moments that are not necessarily aligned with the net magnetization vector.

However, since the magnetic moments are no longer completely random their vec-

tor sum yields a nonzero net magnetization that describes the underlying order of

the system. The energetic cost of misaligned magnetic moments increases as the

temperature decreases. Thus, in simple magnetic materials the net magnetization

monotonically increases with decreasing temperature until it saturates.

For the system to become more ordered, areas of disparate values in the order

parameter must coalesce and form larger areas of common local magnetization, as

shown in the transition from part (b) to part (c) in Fig. 2.6. To achieve this end, the

domain walls that preserve disorder in the system must be removed. These defects

in many systems do not diffuse and therefore are able to frustrate the ability of the

system to become more ordered.
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Figure 2.6: Schematic representation of the paramagnetic to ferromag-
netic transition. The local orientation and amplitude of individual mag-
netic moments are shown as arrows. (a) Above the transition temper-
ature Tc the magnetic moments are randomly oriented. (b) Below Tc,
magnetic domains of aligned magnetic moments form and are separated
by domain walls (black lines). (c) States with fewer domain walls and
more order may be produced by changing initial and boundary condi-
tions as well as other parameters such as applying an external magnetic
field.
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2.3.2 Superfluid Order Parameter and Quantized Vortices

The transition from He I to He II is also a symmetry-breaking, continuous

phase transition. Again, the system may be described by an order parameter. In

the context of the two-fluid model, only the superfluid component is described by

the order parameter, which takes the form of a complex field analogous to a wave

function

ψ = feiφ, (2.8)

for real values of f and φ. The superfluid density is given by

ρs = mψ∗ψ = mf 2, (2.9)

wherem is the mass of a 4He atom. In analogy with the increase in net magnetization

as T → 0 K in ferromagnets, the order in He II also increases as exemplified by the

increase in the superfluid fraction ρs/ρ for decreasing temperature (black curve in

Fig. 2.5). The superfluid fraction is zero at Tλ (complete disorder) and unity at

T = 0 K (complete order).

The typical quantum-mechanical mass current js takes the form

js =
�

2i
(ψ∗∇ψ − ψ∇ψ∗) = �f 2∇φ. (2.10)

Recognizing that a mass current is given by the product of a density and a velocity

we can combine these two equations to obtain the superfluid velocity vs = js/ρs.

This yields

vs = (�f 2∇φ)/(mf 2) = (�/m)∇φ. (2.11)
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Figure 2.7: Schematic of a multiply-connected space with a topological
defect at the center. The contour C shown by the thick, black line cannot
contract to a point because of the presence of the defect at the center of
the space.

If we assume that ψ represents the ordered part of the atomic wavefunctions, any

gradients in the phase of the order parameter φ will produce a flow in the superfluid

component. As discussed above, Landau stated that the flow of the superfluid

component is potential flow (∇×vs = 0). This is true in any simply connected region

of the fluid since∇×∇φ = 0 for any scalar φ. A simply connected space is defined as

a region where every path between any two points can be continuously transformed,

without leaving the space, into every other path preserving the endpoints. Less

formally, if every contour in a space can be contracted to a point without leaving the

space then it is simply connected. Thus the Euclidean plane R2 is simply connected,

but if a hole is placed at the origin, for example, it ceases to be simply connected.

Spaces with such “holes” are called multiply connected, as shown schematically in

Fig. 2.7.
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Multiply connected regions of He II are formed by topological defects that are

analogues of the domain walls present in ferromagnets. In He II the defects are line-

like objects (diameters on the order of 0.1 nm) that must either end on boundaries

or form closed loops. Topological defects generally separate areas with different

values of the order parameter. In He II topological defects produce gradients in the

phase φ. Thus, the value of φ varies along any contour that encloses such a defect.

Continuity of the order parameter ψ defined in Eq. (2.8) requires that the change in

phase along a closed contour C be a multiple of 2π. Therefore, we have the following

quantization condition ∮
C

∇φ · d� = 2πn, (2.12)

for nonzero integers n. The standard definition for circulation around a classical

vortex with velocity field v is

Γ =

∮
C

v · d�, (2.13)

for any contour C containing the vortex. Recognizing that we can replace ∇φ in

Eq. (2.12) with mvs/� using Eq. (2.11), we can define the circulation around a

topological defect in He II thus

Γ =

∮
C

vs · d� = 2π�n/m. (2.14)

Identifying that 2π� = h, where h is Planck’s constant, and defining the quantum

of circulation κ ≡ h/m 
 9.97× 10−4 cm2/s, we arrive at

Γ =

∮
C

vs · d� = nκ. (2.15)

Therefore, the circulation around a topological defect in He II is quantized in units

of κ. If we consider a contour C that is a circle of cylindrical radius s around a
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straight defect and that the gradient in the phase φ is constant (producing a constant

vs = vsφ̂) then we have

∮
C

vs · d� = 2πsvs = nκ. (2.16)

vs =
nκ

2πs
, (2.17)

This velocity field is analogous to the flow field around a classical, singular vortex

with circulation nκ. However, the circulation of vortices in He II is quantized,

which is why these line-like defects are referred to as quantized vortices. Multiply-

quantized vortices (n �= 1) are energetically unfavorable and are expected to break up

into multiple singly-quantized (n = 1) vortices. For this reason, it is often assumed

that a vortex state in He II is composed of identical, singly-quantized vortices.

2.3.3 Quantized Vortex Dynamics

Landau’s initial formulation of the two-fluid model stated that the superfluid

and normal fluid components pass through one another without interacting. The

mutual interactions between the two fluids were restricted to those required to satisfy

the conservation laws outlined in Section 2.2. Since quantized vortices are topolog-

ically constrained and do not diffuse, they are locked to the superfluid, meaning

that they move with the local superfluid velocity. Determining the dynamics of the

quantized vortices, then, amounts to computing the velocity field induced by the

vortices themselves and the “background” superfluid velocity vs produced by other

means such as heat fluxes.

Following the pioneering work of Schwarz [50, 53, 54], we will consider a single
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quantized vortex in an infinite fluid with a position parameterized by the curve

s = s(ξ, t). The velocity produced at a position r by the vortex filament vω is given

by a Biot-Savart expression of the form

vω =
κ

4π

∫
L

(s1 − r)× ds1

|s1 − r|3 , (2.18)

where the integral is taken along the filament and s1 is a point on the vortex. This

integral diverges as r approaches a point on the vortex filament. To control this

divergence, theories typically divide the velocity of the vortex filament itself, say ṡ,

at the point s into two components [53]

vω(s) = ṡ =
κ

4π
s′ × s′′ ln

(
2(l+l−)1/2

e1/4a0

)
+

κ

4π

∫
L̃

(s1 − r)× ds1

|s1 − r|3 , (2.19)

where primes denote differentiation with respect to the arc length ξ, a0 is a cutoff

parameter corresponding to the radius of the vortex filament, l+ and l− are the

lengths of the two adjacent line elements connected to the point s, and L̃ represents

integration along the vortex line outside the region specified by l+ and l− as shown

schematically in Fig. 2.8. A schematic representation of the vectors s′, s′′ and s′×s′′

is given in Fig. 2.9.

Computing the full Biot-Savart integral is computationally expensive. Many

researchers choose to assume the localized-induction approximation (LIA) [51–54]

which ignores the nonlocal, second term in Eq. (2.23); the validity of this approxi-

mation, though, has recently been questioned [55, 56]. The commonly used equation

invoking the LIA is

ṡ = βs′ × s′′. (2.20)
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Figure 2.8: Original figure taken from Schwarz’s [53] pioneering imple-
mentation of vortex-filament methods that define the nonlocal and local
contributions from a vortex filament. The nonlocal term in Eq. (2.19) is
determined by computing the modified line integral L̃ along the vortex
filament outside the small wedge centered on the point s as shown in
the top figure. The definitions of l+ and l− used to compute the local
contribution in Eq. (2.19) are shown in the bottom figure.
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Figure 2.9: Schematic representation of the vectors s′, s′′ and s′ × s′′ for
a vortex filament defined by the curve s = s(ξ, t) taken from [53].

The coefficient β is defined as

β =
κ

4π
ln

(
c〈R〉
a0

)
, (2.21)

with c a constant of order unity and the quantity (l+l−)1/2 replaced by the charac-

teristic radius of curvature 〈R〉 of the vortex lines.

Assuming that there is a background flow of the superfluid vs produced by a

thermal counterflow (see next section) or by some other means, then the motion of

the vortex filament is given by

ṡ0 = vs +
κ

4π
s′ × s′′ ln

(
2(l+l−)1/2

e1/4a0

)
+

κ

4π

∫
L̃

(s1 − r)× ds1

|s1 − r|3 . (2.22)

Equation 2.22 would approximately describe the dynamics of quantized vortices

in the absence of any exchange of momentum between the superfluid and normal

fluid components. However, in 1957 Vinen [19–21] discovered that momentum is

exchanged between vs and vn through a “mutual friction” that acts on the vortices.

The common phenomenological description yields the following velocity for a point
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s on a vortex filament [53]

ṡ = ṡ0 + αs′ × (vn − ṡ0)− α′s′ × [s′ × (vn − ṡ0)] , (2.23)

where α and α′ are temperature-dependent coefficients tabulated in Section B.3. The

most common implementation of Eq. (2.23) is in numerical simulations of coun-

terflow turbulence where values of vn and vs are prescribed and the steady-state

dynamics of the quantized vortices are characterized.

2.4 Thermal Counterflows

The most commonly studied form of turbulence in He II is counterflow tur-

bulence. The typical experimental setting consists of a channel immersed in He II

that is closed on one end. A heat flux q is applied, typically by passing electrical

current through a resistive coil of wire, to the closed end of the channel driving a

flow in both the normal fluid and superfluid components, as shown schematically in

Fig. 2.10. The heat escapes the channel and eventually is removed by some cooling

mechanism such as evaporative cooling at the free surface of the liquid.

The resulting flows of both the normal fluid and superfluid components are not

driven by buoyancy as in a classical fluid. Indeed, applying a heat flux orthogonal

to the local gravity vector or in the absence of gravity will still drive a flow. The

flow is driven by a gradient in entropy. As discussed in Section 2.2, only the normal

fluid component is capable of transporting heat. The amount of entropy carried per

unit volume is the product of the fluid density ρ and the specific entropy S, which

is the entropy per unit mass. To convert the entropy per unit volume into heat per
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Figure 2.10: Schematic representation of an experimental counterflow
channel and the resulting fluid velocities. The channel is immersed in a
bath of He II and closed at one end (the bottom in this case). A known
heat flux q is applied to the closed end of the channel by passing an
electrical current through a resistive element. The normal fluid carries
the heat away from the source by moving in the direction of the heat flux
with an average velocity 〈vn〉 given by Eq. (2.25). To conserve mass, the
superfluid moves towards the heat source with an average velocity 〈vs〉
defined in Eq. (2.26). The counterflow motions drive a vortex tangle that
on average moves downward with the superfluid component but with a
different velocity 〈vt〉. The injected heat passes through the channel and
is eventually removed by some cooling mechanism, such as evaporative
cooling at the free surface of the liquid.
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unit volume, one must multiply by the temperature T . The heat flux through the

fluid is given by the product of the entropy per unit volume ρsT and the normal

fluid velocity vn. Thus, equating this with the driving heat flux q we can compute

the normal fluid velocity vn as first given by Landau [70]

q = ρsTvn (2.24)

vn =
q

ρsT
. (2.25)

Applying the conservation of mass given by ρnvn+ρsvs = 0, the resulting superfluid

velocity is

vs = −ρn
ρs
vn, (2.26)

which opposes the motion of the normal fluid. The counterflow velocities vn and

vs depend strongly on the temperature. For temperatures near Tλ, the superfluid

density is very small, which requires very large superfluid velocities to conserve mass.

Conversely, for temperatures below ∼ 1 K, the density of normal fluid is very small

and therefore the specific entropy S is correspondingly small yielding very large

values of vn necessary to conserve heat.

The opposing motions of vn and vs also drive the formation of a vortex tangle,

which moves with a mean velocity vt as shown in Fig. 2.10. The mutual friction

forces between the quantized vortices and the normal fluid discussed briefly in the

previous section, can exchange momentum between the quantized vortices and the

normal fluid. Depending upon the local flow velocities and the orientation of the

quantized vortex, vn may act to either extend the vortex line or shrink it.

Vinen developed a theory to characterize the total amount of vorticity present
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in the superfluid component by considering the average vortex line length per unit

volume L [19–21]. Higher values of L imply that there are more quantized vortices

present within the system. In the case of a thermal counterflow where the vortices

and normal fluid motions oppose one another, mutual friction tends to increase

L. However, the increase in L is accompanied by an increase in dissipation in the

superfluid component via mutual friction and the process of reconnection between

the vortices, as discussed in the next section. Assuming homogeneity and isotropy

of the vortex tangle, Vinen was able to phenomenologically describe the evolution

of the vortex line length density in a thermal counterflow. The following kinetic

equation is now termed the Vinen equation, namely,

∂L

∂t
= ξ1 |vns|L3/2 − ξ2κL

2, (2.27)

where ξ1, ξ2 > 0 are dimensionless, temperature-dependent coefficients while vns =

〈vn〉 − 〈vs〉, where the brackets imply spatial averages. The first term on the right-

hand side is always nonnegative and acts to increase L by means of counterflowing

motions, which are defined by nonzero values of vns. The second term is always

nonpositive and acts to reduce the vortex line length through dissipative processes,

namely mutual friction and quantized vortex reconnections. A statistical steady-

state, given by ∂L/∂t = 0, is reached when the two terms on the right-hand side

are equal, which yields a saturated vortex line length density

Lsat =

(
ξ1
ξ2κ

|vns|
)2

. (2.28)
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2.5 Reconnection

Relaxation toward equilibrium requires dissipative processes but can be inhib-

ited by topological defects that cannot diffuse. Linear topological defects, analogous

to quantized vortices in He II, occur in a variety of systems such as liquid crystals

[71] and superconductors [72]. Dissipation normally accompanies the reconnection

of two defect lines that cross, change topology by exchanging ends and separate (as

illustrated in Fig. 2.11). Prime examples [73] of dissipation by reconnection occur in

astrophysical plasmas (such as solar flares [74, 75] and magnetic substorms [76, 77])

and sawtooth crashes in fusion devices [78], where magnetic energy is dissipated by

the acceleration of nearby particles [10, 79–82]. Reconnection has also been stud-

ied in liquid crystals [71], superconductors [72, 83, 84], cosmic strings [85], viscous

[86–88] and Euler [89] vortices and Bose-Einstein condensates [90].

Quantized vortex reconnection in He II has been previously studied numeri-

cally and analytically by employing vortex-line methods [50, 53, 54, 57, 91, 92] and

by integrating the Gross-Pitaevskii equation [58, 93] given by

i�
∂ψ

∂t
=

(
− �

2

2m
∇2 + V (r) + g|ψ|2

)
ψ, (2.29)

where ψ is the order parameter field, V (r) is an external potential and g a coupling

constant. The reconnection process in He II was first proposed as a necessary dis-

sipative mechanism by Feynman in 1955 [14]. Schwarz [53, 54] forced reconnection

upon any two vortices that were separated by less than some threshold distance in

his vortex-line simulations of counterflow turbulence. He invoked reconnection, even

though it had not yet been proven to occur in He II, in order to attain an otherwise
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Figure 2.11: Schematic of the evolution of reconnecting antiparallel di-
rected linear topological defects; in the case of vortices the arrows in-
dicate the sense of the vorticity. The minimum separation between the
defects is δ(t) with δ(t0) = 0. Although not evident here, reconnection
need not be planar and, indeed, has been predicted to be intrinsically
three-dimensional [53, 57].

elusive statistical steady-state for the vortex line density L in his pioneering simula-

tions. Koplik and Levine [58] were the first to show that two quantized vortices will

reconnect using the Gross-Pitaevskii equation, even though there is no diffusion,

which was thought to play an essential role in reconnection. To characterize the

evolution of reconnecting vortices, some of these theoretical studies examined the

minimum separation distance δ(t) between the vortices as shown in Fig. 2.11. As-

suming that the only relevant parameter in reconnection dynamics is the quantum

of circulation κ, dimensional analysis yields the relation

δ(t) = A (κ|t− t0|)1/2 , (2.30)

where t0 is the moment of reconnection and A is a dimensionless factor of the

order unity. One may optimistically expect this scaling to be valid for length scales
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Figure 2.12: Feynman’s initial proposition for the reconnection of quan-
tized vortices taken from [14].

between the vortex core size (∼ 0.1 nm) and the typical intervortex spacing, which

ranges from ∼ 0.1 to 1 mm our experiments. Basically, however, Eq. (2.30) should

represent an asymptotic expression, subject at least to corrections for longer times.

Indeed, slight deviations were observed in prior simulations implementing line-vortex

models [53, 57]. The Gross-Pitaevskii equation is Hamiltonian and time-reversal

invariant, but particular solutions may well break this symmetry.

Reconnection is considered to be an essential mechanism for removing vortex

line length and dissipation in He II, particularly as T → 0 K. One means of removing

vortex line length via reconnection is shown in Fig. 2.12, which is taken from Ref. [14]

where Feynman first proposed the process of reconnection in He II. Feynman argued
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that if reconnection could occur, then larger quantized vortex loops could form

smaller ones and so on until the loops became sufficiently small to decay from friction

with the normal fluid or interactions with the boundaries. Another mechanism

stems from the anomalously large velocities associated with reconnection for times

near t0. For temperatures T > 1 K, reconnecting vortices with large, atypical

velocities will lose more of their energy to the normal fluid via mutual friction.

For temperatures T < 1 K, where the normal fluid density is essentially negligible,

the dissipative mechanism is less clear and actively debated. Reconnection is also

thought to produce Kelvin waves on the vortex lines, which as described above

in Section 1.2, are helical disturbances that propagate down the vortices. Since

the waves are underdamped, they persist and interact nonlinearly. The nonlinear

coupling between waves will produce higher frequency oscillations until they become

high enough to emit phonons into the surrounding fluid that are eventually absorbed

by the boundary [15, 32]. It is important to stress that dissipation in He II for

temperatures near absolute zero remains a controversial and active area of research.
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Chapter 3

Apparatus and Experimental Techniques

In this chapter we discuss details of the experimental apparatus and methods

used to obtain the results presented in the forthcoming chapters. In addition to

the newly implemented apparatus and techniques contributed by the author, all of

the components used in prior experiments have been heavily modified or completely

replaced. To begin we give a brief overview of the optical cryostat used in these

studies, which is the central component to all of this work. We then give an overview

of the injection technique developed in our laboratory that is used to produce viable

tracer particles in He II used for flow visualization. The details of the heater design

and operation as well as the channel used for the counterflow studies presented in

Chapter 5 are also discussed. We follow this with an overview of the temperature

measurements and control mechanisms. We end the chapter with a discussion of

the visualization and particle-tracking methods used to acquire and analyze the

trajectories of tracer particles.

3.1 Apparatus

A schematic diagram of the important components of the experiments is shown

in Fig. 3.1. The central component is the cryostat, which serves as the vessel for

the liquid helium. The details of the cryostat are given in Subsection 3.1.1 followed
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Figure 3.1: Schematic diagram of the essential components of the exper-
imental apparatus. The cryostat serves as the liquid helium vessel. The
injection technique is composed of the mixture bottle, a series of valves
and the injection line that ends 1 cm above the cryostat windows. The
temperature control system is composed of internal and external elec-
tronics not shown in this figure as well as the pumping lines, pneumatic
valve and the roughing pump. The camera, optics and laser (not shown)
comprise the visualization technique. All of the apparatus is placed on a
rotating table that is attached to an air bearing, which allows the entire
system to rotate.
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by a discussion of the apparatus placed within the cryostat used for driving thermal

counterflows in Subsection 3.1.2. External to the cryostat are several instruments for

measurements as well as components used for producing and visualizing the tracer

particles. The injection technique used to produce the hydrogen tracer particles is

composed of the mixture bottle, a series of valves and the injection line, which are

further detailed in Subsection 3.1.3. The details of the temperature measurement

and control system, shown by the pumping lines, pneumatic valve and roughing

pump are discussed in Section 3.2. Lastly, the optics and camera implemented

for visualizing the tracer particles as well as the particle-tracking method used for

analysis are discussed in Sections 3.3 and 3.4.

All of the apparatus is attached to a platform designed and built by the author.

The purpose of the newly-designed platform is to allow the entire apparatus to

rotate so that the dynamics of He II in the rotating frame may also be studied.

Preliminary rotating experiments have been conducted, but the details of which

will not be discussed here. The platform is designed to attach to the air bearing

used in previous experiments. These other experiments using water had caused

the air bearing to seize from rust, which prevented it from being able to rotate.

This was corrected by carefully repolishing every part without modifying any of the

significant dimensions of the air bearing.
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Figure 3.2: Photograph of the Oxford Instruments Optistat-SXM cryo-
stat used in the experiments presented here.
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3.1.1 Oxford Cryostat

The liquid 4He used in this experiments is contained within an Oxford In-

struments Optistat-SXM cryostat, pictured in Fig. 3.2. The cryostat is primarily

composed of a 4 L helium reservoir, a variable temperature test section and a vacuum

space that provides thermal insulation to the surrounding environment as shown in

Fig. 3.3. The test section is designed for use at temperatures between 1.6 K and

300 K. Cooling is provided by allowing liquid helium to flow from the reservoir into

the test section through a thin tube with the flow rate modulated by a needle valve.

A heat exchanger is embedded in the wall of the test section immediately above

the windows, which is fitted with a thermometer and tunable heater to control the

temperature within the test section. Temperatures below the atmospheric boiling

point of liquid helium (4.2 K) are achievable by pumping on the liquid as described

in Section 3.2.2.

The cylindrical test section has a diameter of 49 mm and is 645.5 mm long.

Optical access is provided by four windows 78 mm above the bottom of the test

section each 90◦ apart. An additional window is located at the center of the bottom

of the test section, which affords us the ability to view the dynamics along the axis

of rotation when the system spins. The liquid levels in both the reservoir and the

test section are measured with independent level meters.
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Figure 3.3: Mechanical drawing of the Oxford Instruments Optistat-
SXM cryostat used in the experiments presented here.
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3.1.2 Heater Design and Counterflow Channel

Two separate heaters and channels have been designed and constructed for

thermal counterflow studies. Only one of the counterflow channels has been used

for the studies presented here, and will therefore be the focus. Details of the smaller

counterflow channel are discussed in Subsection 8.3.1.

Quantitative comparisons between experimental and theoretical studies of

thermal counterflow turbulence require precise knowledge of the heat flux q that

drives the system. We have constructed the counterflow channel shown in Fig. 3.4.

The heater is formed by a spiral pattern of nichrome wire bonded to G10 fiberglass

using stycast. The heater is placed at the bottom of the channel 7.5 cm below the

observation volume. The nichrome wire is chosen because it maintains its electri-

cal resistivity at liquid helium temperatures, thereby allowing Ohmic dissipation to

serve as the source of heat. The G10 substrate is electrically insulating and also

machinable. This allowed us to machine spiral grooves in the G10 that would form

the heater pattern. A thin layer of stycast covers the entire heater surface to prevent

the wire from detaching itself from the G10 substrate. Stycast is one of the few sub-

stances that provide a very strong bond as well as excellent thermal conductivity at

liquid helium temperatures. The spiral heater pattern minimizes nonuniformities in

the local heat flux; the largest deviation of only a few percent occurs at the center

of the spiral. Copper wires with a much lower resistivity than the nichrome, par-

ticularly at liquid helium temperatures, are soldered to the two ends of the spiral

heater and passed through the top of the test section using a vacuum-sealed electri-
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Figure 3.4: Scaled drawings of the (a) spiral heater and (b) counterflow
channel. The spiral heater is concentrically placed in the bottom of the
counterflow channel. The channel is open to the surrounding He II at
the top. Laser light passes through the channel through two slits at
the mid-height and 90◦ scattered light is observed through a hole in the
channel. The channel (4.75 cm diameter) essentially occupies the entire
cross-section of the test section (4.9 cm diameter).
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Figure 3.5: Diagram of the heater power measurement necessary to com-
pute the heat flux. A DC power supply provides the source of current
that flows through a constant 2 Ω resistor and the heater. Independent
voltmeters determine the voltage drop across each resistor, which is then
used to compute the electric power dissipated by the heater.

cal fitting. Since the resistivity of the copper wires is much lower than the nichrome,

effectively all of the Ohmic dissipation occurs in the nichrome wires, which allows

for accurate measurements of the heat flux in the counterflow channel.

The measurement of the electrical power of the heater is shown diagrammati-

cally in Fig. 3.5. A DC power supply is used to drive a current through the heater.

In series with the heater is a 2 Ω shunt that is used to measure the electrical current.

The resistance of the shunt is steady and known. Therefore, by measuring the volt-

age drop across the shunt VA using Voltmeter A the current is given by I = VA/2.

A separate voltmeter measures the voltage drop across the heater itself VB. The

total power dissipated by the heater is P = IVB = VAVB/2. The magnitude of the

heat flux q is the power dissipated divided by the area A = 15.52 cm2,

q =
P

A
=
VAVB
31.04

W/cm2. (3.1)
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For each experimental run the output of the DC power supply is set and the values

of VA and VB are measured and recorded.

3.1.3 Injection Technique

Hydrogen tracer particles are produced in situ by directly injecting a room

temperature mixture of hydrogen and helium gas into the bulk of the liquid helium in

the test section. As the mixture passes down the injector tube inside the test section

it cools from room temperature to liquid helium temperatures causing the hydrogen

to solidify and the helium to liquefy. The result is a polydisperse distribution of

solid hydrogen tracers that are approximately 1 μm in diameter, as evidenced in

Gregory Bewley’s thesis [1], with an initial volume fraction of 10−6–10−5. The

solid hydrogen has a higher index of refraction than the surrounding liquid. This

difference in refractive index allows the particles to be imaged since light will be

scattered from the solid-liquid interface, as shown in Fig. 3.6. This technique was

developed by Gregory Bewley [1]. The apparatus used in these previous studies was

manually controlled and we have replaced the entire system to allow for computer

control.

The mean of the initial particle size distribution is controlled by the relative

fraction of hydrogen and helium present in the room temperature mixture. Using

pure hydrogen gas produces unusable, macroscopic chunks of hydrogen while parti-

cles hundreds of nanometers in size may be produced by using a fraction of a percent

of hydrogen. For all of the experiments presented here the mixture contained 2%
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Figure 3.6: A 1 cm × 1 cm photograph of a “mist” of hydrogen tracer
particles in He I immediately after injection. Since this photograph is
taken within only a few seconds after the injection, mixing gradients
are still evident. Horizontal stripes are produced by bubbles of boiling
helium at the windows that distort the laser sheet. The boiling ceases
for all temperatures below Tλ.
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H2 and 98% 4He, which we found produced the optimal mean particle size for our

purposes. It is important to note that owing to van der Waal’s interactions the

hydrogen particles irreversibly aggregate over time, shifting the mean particle size

to larger values. Since the solid hydrogen is slightly buoyant (ρH2 = 0.088 g/cm3)

as compared to the fluid density of (∼ 0.145 g/cm3), large particles will float to

the free surface of the liquid. It is possible to match the particle density to the

density of the liquid by introducing deuterium into the room temperature mixture

as well. However, large, neutrally-buoyant particles would not be appropriate for

studying the flow and they would not float to the free surface. As such, we prefer to

accept the density mismatch so that it is possible to easily remove large, disruptive

particles from the field of view.

The valves that are used to allow the 4He–H2 mixture to enter the cryostat are

shown in Fig. 3.1. The two needle valves are manually adjusted before any injection

to toggle the flow rate through the injection tube, which is a 0.125 inch copper

tube outside of the cryostat coupled to a thin-walled 0.25 inch stainless steel tube

inside the cryostat that ends immediately above the windows used for visualization

(Fig. 3.7). For all of the experiments discussed here, the first needle valve is opened

only two “clicks” while the second is left fully open. The pressure on the vessel

containing the mixture is always set to 20 psi. The solenoid valve that allows the

gas to enter the injection line is computer controlled. Using a digital output on

a computer-controlled National Instruments data acquisition control board (DAQ),

the solenoid valve is opened by applying 5 V to a control circuit. The solenoid valve

can be opened for times as short as tens of milliseconds or left open indefinitely.
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Typical injections using the various experimental parameters given above last for

0.5–3 seconds.

It is important to note that this injection technique only produces satisfactory

results when the liquid helium is in the He I state. Injections that take place in

the He II state produce much larger particles that cannot be used as fluid tracers.

Thus, the standard protocol is to inject at a temperature slightly above Tλ, slowly

cool the system (∼ 400 μK/s) to the set temperature then acquire the desired data.

The slow cooling process minimizes particle aggregation and fluid disturbances, but

in doing so a portion of the hydrogen leaves the observation volume resulting in

typical hydrogen volume fractions of ∼ 10−7.

3.2 Temperature Measurement and Control

Accurately measuring the temperature and also having the ability to control

it are essential to these experiments since many properties of He II change with

temperature. In order to compare experimental measurements with any theory

or computations of He II the temperature must be precisely known. Prior to the

work presented here, temperature control was performed by manually opening and

closing a valve and the temperature was sporadically recorded by hand. In an effort

to improve upon these methods, we interface temperature measurements and control

with a computer. This allows for better knowledge of the temperature, more precise

control and the ability to synchronize the temperature measurements with other

attributes of the experiment.
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Figure 3.7: Schematic diagram of the injection tube inside of the test
section of the cryostat. The tube is made of stainless steel with an outer
diameter of 0.25 inches and inner diameter of 0.22 inches. The tube ends
in the bulk of the fluid only 1 cm above the field of view.
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3.2.1 Temperature Measurement

Two separate temperature measurements are implemented in the experiments

presented here. The first is a temperature probe that is mounted flush with the

inside wall of the test section of the cryostat. The temperature is determined using

an Oxford ITC temperature controller that can be interfaced with a computer using

GPIB for data acquisition purposes. The details of this temperature method are

proprietary and therefore will not be presented here.

The second temperature probe is a calibrated thermistor that is immersed

in the fluid only ∼ 1 cm above the field of view. The resistance of the probe

changes with temperature, particularly strongly in the temperature range of interest

as shown in Fig. 3.8. The values of the calibration curve are given in section B.2.

The temperature of the fluid, then, is determined by measuring the resistance of

thermistor.

The technique used to measure the resistance of the thermistor is diagrammed

in Fig. 3.9. The essential component to the measurement is the Stanford Research

Systems SR830 DSP Lock-In Amplifier. The important settings for the lock-in

amplifier are given in Table 3.1. The amplitude of 0.150 V is chosen in combination

with the 450 kΩ resistor that is in series with the thermistor in order to limit the

current through the thermistor to 0.33 μA. The manufacturers of the thermistor

suggest that such a low current be used in order to limit the Ohmic heating of the

thermistor itself. If excessive current is used then the probe will heat up and the

calibration will cease to be valid. Furthermore, limiting the heat input into the
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Figure 3.8: Calibration curve for the thermistor used for the temperature
measurements. The data points are given in Table B.4.
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Table 3.1: Parameters of the SR830 lock-in amplifier used to measure the resistance
of the temperature probe.

Parameter Value
Amplitude 0.150 V
Frequency 997 Hz
Phase 0 degrees
Harmonic 1
Source Internal
Time Constant 1 second
Sensitivity 1–5 mV
Signal Input A
Channel 1 Display X
Channel 1 Output X

He II itself is desirable so as to minimize spurious counterflows. The frequency of

the AC driving signal for the circuit is chosen to be near 1 kHz in order to ensure

sufficient signal averaging over the duration of the time constant chosen (1 s), but we

avoid much higher frequencies where parasitic capacitances become significant. The

sensitivity is chosen to be the lowest value possible without producing an overload,

which occurs when the signal voltage at Input A is larger than the chosen sensitivity.

The display and output of Channel 1 is chosen to be X, which is the in-phase

component of the signal. We do not use R = (X2 + Y 2)
1/2

because Y is the signal

orthogonal to X, which is produced by capacitance rather than resistance. The

appropriate GPIB settings must also be chosen to be in accord with those of the

computer to ensure proper communication.

The circuit shown in Fig. 3.9 is a simple voltage divider. We are interested in

determining the resistance of the thermistor R, which may then be used in conjunc-

tion with the calibration to yield the temperature. Assuming that the resistance of
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Figure 3.9: Schematic diagram of the resistance measurement of the
temperature probe. The “Sine out” of the SR830 lock-in amplifier drives
an alternating current through a pair of resistors — a 450 kΩ resistor
outside of the cryostat used to restrict the current and the temperature-
dependent thermistor immersed in the liquid helium used as the tem-
perature probe. The voltage drop across the thermistor is measured by
“Input A” on the lock-in amplifier and recorded by a computer through
a GPIB interface.
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the 450 kΩ resistor remains unchanged (appropriate wire-wound resistors with small

temperature coefficients should be chosen), then the current through the circuit is

given by

I =
ΔV

450000 +R
=

0.150

450000 +R
. (3.2)

The measurement of X by the lock-in amplifier provides the voltage drop across the

thermistor given by

X = IR =
0.150R

450000 +R
. (3.3)

Solving this equation for R we arrive at

R =
450000X

0.150−X
. (3.4)

In general, if a resistance R1 and driving voltage V are used instead of the suggested

values of 450 kΩ and 0.150 V then R is given by

R =
R1X

V −X
. (3.5)

Upon measuring R it is straightforward to determine the temperature T of the

thermistor by interpolation using the calibration. The MatLab codes that are used

to perform this interpolation are given in Section A.1.

3.2.2 Temperature Control

Temperature control requires knowledge of the temperature and the ability to

input and remove heat from the system. The means by which the temperature

is measured are outlined in the previous subsection. Since the fluid is held at

temperatures ∼ 2 K and is thermal contact with a ∼ 300 K environment, albeit
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with very small thermal conductivities by design, there is always a source of heat.

We therefore control the temperature by controlling the amount of cooling applied

to the system. Temperature control could be improved by also having a tunable

heat source present in the liquid.

The temperature of the working fluid is decreased by evaporative cooling. The

saturated vapor pressure of He II is approximately 5000 Pa at Tλ and 750 Pa at

1.6 K, which is the minimum temperature achievable by the cryostat. The gaseous

spaces above the free surfaces of the liquid in both the test section and the reser-

voir are connected to a roughing pump through a series of valves shown in Fig.

3.1. The roughing pump can achieve pressures as low as 0.5 Pa. By opening the

valves between the gaseous spaces above the liquid and the roughing pump the am-

bient pressure is reduced to a level below the vapor pressure of the liquid, thereby

producing evaporative cooling.

Since the vapor pressure of liquid 4He decreases from atmospheric pressure

(∼ 105 Pa) at 4.2 K to 750 Pa at 1.6 K, the maximum rate of cooling also decreases

dramatically with temperature. This presents more of a problem at higher temper-

atures because the efficiency of the cooling depends upon the flow rate of gaseous

helium through the pumping lines. As the flow rate increases the interaction be-

tween the gaseous helium and the 300 K walls of the pumping lines increases, which

removes heat from the room and transfers it to the helium, reducing the cooling

efficiency. This phenomenon is clearly evidenced by the condensation or freezing of

water out of the air onto the exterior of the pumping lines. It is therefore suggested

that cooling rates of ∼ 3 mK/s should not be exceeded.
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The cooling rate is toggled by the pressure drop across the pneumatic valve

(Metra Inc. AAV-KF40) shown in Fig. 3.1. This valve is controlled by an applied

pressure. For pressures below ∼ 20 psi the valve will completely close while it will

fully open for pressures in excess of ∼ 60 psi. Therefore, applying a pressure P

between 20 and 60 psi allows for modulation of the flow rate through the valve. The

pressure applied to the pneumatic valve is controlled by a commercial current-to-

pressure transducer. The transducer applies zero pressure for current values below

4 mA and maximum pressure for 20 mA. The zero and maximum values of pressure

of the transducer have been tuned such that 4 mA corresponds to 20 psi, which

closes the valve, and 20 mA yields 60 psi, which will completely open the valve.

Using these settings provides the maximum dynamic range of the pneumatic valve.

Current is applied to the transducer using a computer-controlled analog out-

put from a National Instruments data acquisition control board (DAQ). The DAQ

is capable of producing voltages between 0 and 5 V, which then passes through a

250 Ω resistor. Voltages below 1 V produce currents less than 4 mA, thereby com-

pletely closing the valve. The maximum voltage of 5 V gives the maximum current

accepted by the transducer of 20 mA. A standard proportional-integral-derivative

(PID) control algorithm is used to control the temperature. The temperature typ-

ically oscillates about a given set temperature with an amplitude of ∼ 10 mK as

evidenced in the example temperature trace shown in Fig. 3.10.

The roughing pump is connected to both the helium reservoir and the test

section as shown in Fig. 3.1. The reservoir and test section have independent needle

valves that can be opened and closed manually to set which space is cooled while
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Figure 3.10: Plot of an example temperature trace showing typical oscil-
lations about the set point (T = 2.05 K in this case). The temperature
oscillates ±10 mK because of the thermal inertia of the system and the
particular control mechanism. Improved temperature control could be
obtained by maintaining a constant pumping rate and modulating an
internal heater, rather than only modulating the pumping rate.
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also providing additional means of controlling the cooling rate. During the course of

typical experiments, the reservoir and test section are held at the same temperature

for a few important reasons. First, if only the test section is pumped then it is very

difficult to control the temperature slew rate owing to the smaller volume of liquid

compared to the reservoir. Furthermore, the helium in the test section becomes

depleted over time and must be replenished by allowing liquid to be transferred from

the reservoir to the test section. The test section is filled to the maximum attainable

level, monitored by a level probe inside the test section, before each experimental

run for purposes of repeatability. If the helium in the reservoir used to refill the test

section is at a very different temperature than the test section, large temperature

gradients form in the He I state, driving strong, disruptive convection. Therefore, we

have found by experience that keeping the temperature in the reservoir, measured

using the same technique as the test section and explained above, as close to the

test section as possible yields optimal experimental conditions.

3.3 Visualization

The distinguishing characteristic of the experiments presented here is the abil-

ity to visualize both the motions of the normal fluid and the dynamics of the quan-

tized vortices in He II [2–6]. The essential components of these experiments are

the tracer particles discussed in Subsection 3.1.3 and the visualization technique

composed of optics, cameras and a particle-tracking algorithm. The basic configu-

ration of the optics and camera are shown in Fig. 3.1 and we give the details of the
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visualization technique in the following subsections.

3.3.1 Optics

A commonly used means of visualizing fluid flows is to focus a camera on a thin

laser sheet that passes through a region of interest within the flow. The optics used

to form the laser sheet are shown schematically in Fig. 3.11. Two different lasers are

used in these experiments; the results presented in Chapter 5 are obtained with a

3 mW green laser pointer and the results in Chapters 6 and 7 use an argon ion laser

that is capable of 6 W of total power. In both cases the initial laser beam that is

approximately 2 mm in diameter is expanded in the z-direction using a cylindrical,

diverging lens. Once the beam has been sufficiently expanded to the desired height

(∼ 10 mm) it passes through a converging, convex lens that serves two purposes:

(i) to collimate the beam in the z-direction and thereby prevent further expansion

and (ii) focus the beam in the y-direction such that the desired sheet thickness is

attained in the field of view. If the sheet is thicker than the depth of field of the

camera optics, then some particles will be blurry and out of focus. A thinner sheet

provides a higher intensity, thus making each illuminated particle brighter and more

distinguishable from the background but results in a smaller illuminated volume of

fluid. Therefore, a balance must be struck between obtaining the necessary intensity

to visualize the particles as dictated by the camera sensitivity while also illuminating

a large enough fluid volume to perform the experiments of interest.

Taking the assumptions associated with Gaussian optics, the waist of the laser
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Figure 3.11: Schematic diagram of the visualization technique. A laser
beam that propagates in the x-direction is first expanded in the z-
direction by a diverging, cylindrical lens and then collimated in the
z-direction and contracted in the y-direction by a convex, converging
lens. The laser sheet passes through the center of two of the cryostat
windows and 90◦ scattered light is observed by a camera aligned with a
third window. The remaining two windows (one diametrically opposed
to the camera-viewing window and the bottom window) are optically
blocked to prevent stray light.
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sheet is given by

d0 =
2λlf
πr

, (3.6)

where λ is the wavelength of light, lf is the focal length of the converging lens and r

is the initial laser beam radius. The minimum beam waist for all of the experiments

presented here is between 100 – 400 μm. The resulting laser sheet propagates in

the x-direction, is nearly uniform over its ∼ 10 mm height in the z-direction and is

thinnest in the y-direction at the center of the field of view. A camera is then used

to detect 90◦ scattered light through one of the windows shown in Fig. 3.11.

3.3.2 Cameras

Two separate cameras are used in the experiments presented here. A Princeton

Instruments PI-MAX is used for the counterflow studies presented in Chapter 5 while

a Vision Research Phantom camera is used for the reconnection and turbulence

studies discussed in Chapters 6 and 7. In all cases, a 105 mm Nikon macro lens is

used with unity magnification. The cameras differ greatly in their sensitivity and

intended use. For the intents and purposes of the experiments presented here, the

Princeton Instruments camera is better suited in most respects, however it has only

recently become available to us. The details of the two cameras are compared in

Table 3.2.

The Princeton Instruments PI-Max camera has a 512 × 512 pixel cooled, am-

plified CCD sensor used for imaging. The intensified CCD (iCCD) provides excellent

sensitivity and a very large dynamic range (16-bit). This increase in sensitivity al-
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Table 3.2: Comparison between the specifications of the two cameras used in the
experiments.

PI-Max Phantom
Sensor Type iCCD CMOS
Dynamic Range 16-bit 12-bit
Exposure Time ∼ 1 ms 10–16 ms
Laser Power Used 3 mW 2–6 W
Pixel Size 24 μm 16 μm
Image Size 512 × 128 512 × 512
Field of View 12.3 × 3.1 mm 8.2 × 8.2 mm
Frame Rate 50 fps 60–100 fps

lows us to use the 3 mW laser pointer for illumination. In doing so, we greatly reduce

the amount of heat absorbed by the windows, which drive spurious counterflows in

the system, as compared with the 2–6 W necessary with the Phantom camera. The

typical exposure time is chosen to be ∼ 1 ms. The effective pixel size is 24 μm ×

24 μm, which, along with the unity magnification of the lens, results in image pixels

also corresponding to a spatial extent of 24 μm × 24 μm. In order to achieve the

desired frame rate of 50 fps for the counterflow studies discussed in Chapter 5, only

a subregion of 512 × 128 pixels are imaged. This results in a field of view that is

12.29 mm wide (x-direction) and 3.07 mm tall (z-direction).

The Phantom camera has a 1024 × 1024 pixel CMOS sensor. The camera also

has 4 GB of onboard memory that allow it to store 4,000 megapixel images, or over

16,000 512 × 512 pixel subimages. The CMOS sensor is far less sensitive (12-bit)

than the iCCD of the PI-Max camera, however it is much faster and able to acquire

full images at 1,000 fps. The movies used for the data presented in Chapters 6

and 7 are acquired at either 60, 80 or 100 fps with corresponding exposure times
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of 16, 12.5 and 10 ms. The decrease in sensitivity requires the use of 2–6 W of

laser light in order to distinguish the micron-sized particles from the background.

Movies at higher frames rates are desirable, however to do so the exposure time of

the camera must be decreased to levels that would make it difficult to identify tracer

particles. The pixels are 16 μm × 16 μm, which produce the same spatial extent in

the acquired images. Only 512 × 512 subimages are acquired resulting in a field of

view that is 8.19 mm wide and tall in the x- and z-directions, respectively.

3.4 Particle-Image Velocimetry vs. Particle-Tracking

Particle-image velocimetry and particle-tracking are two commonly used meth-

ods of determining fluid velocities from images of tracer particles. Depending upon

the parameters and goals of the experiments, one technique is likely more advanta-

geous than the other. In the following subsections we compare and contrast these

two methods and give arguments for our choice to use particle-tracking in our ex-

periments.

3.4.1 Particle Image Velocimetry

Particle image velocimetry (PIV) [94, 95] is a technique used in many turbu-

lence experiments to determine the velocity field from images of tracer particles.

Typically, two successive images are taken closely spaced in time Δt and the dis-

placement of the particles Δx is computed to determine the velocity v = Δx/Δt. It

is assumed that the flow is characterized by a single smoothly-varying velocity field
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and that the velocities are approximately constant over the time between images.

To obtain more robust results, the displacements of groups of neighboring

particles are used to determine the velocity. Specifically, pairs of images I1 and I2

are each divided into subimages and a single velocity vector is computed for each

subimage. For example, an initial image I1 containing 512 × 512 pixels may be

divided into subimages I ij1 of 16 × 16 pixels, where i, j are integers denoting the

particular subimage. The mean displacement of the particles within each subimage is

determined by computing the cross-correlation Cij(Δx,Δz) between two subimages

I ij1 and I ij2 separated in time by Δt as follows

Cij(Δx,Δz) =

∫ ∫
I ij1 (x+Δx, z +Δz)I ij2 (x, z)dxdz. (3.7)

The peak of the cross-correlation, Cij(Δxpeak,Δzpeak), is determined and the two-

dimensional velocity for that subimage is

vij =
Δxpeak
Δt

x̂+
Δzpeak
Δt

ẑ. (3.8)

The velocity is determined for all values of i and j, resulting in a two-dimensional

velocity field for the entire field of view.

There are, however, several limitations of the PIV technique. The greatest

limitation for the purposes of our study is the assumption that there is a single

smoothly-varying velocity field. This assumption breaks down in quantum fluids

owing to their two fluid nature. As discussed in detail in Chapter 4, tracer particles

in He II can interact with both the normal fluid and superfluid components. Two

attempts at using PIV for the purposes of studying counterflowing motions in He II

are shown in Fig. 3.12. In the first example, Fig. 3.12(a), two distinguishable peaks
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Figure 3.12: Two examples of the cross-correlation plane used in PIV
measurements of our counterflow data. The value of the cross-correlation
is given by color as well as the height of the surface. Two peaks are
evident in (a), which may be interpreted as corresponding to the normal
fluid and superfluid component motions. However, this interpretation
breaks down in (b) where four peaks are clearly evident.

are evident. One could determine each peak separately and attribute one velocity to

the normal fluid component and the other to the superfluid component. However,

this method fails in Fig. 3.12(b) where more than two peaks are evident.

3.4.2 Particle Tracking

Particle tracking algorithms are commonly used to study Lagrangian statistics

in fluid flows. Rather than computing the velocity in a particular region of the flow

from a group of particles, the full trajectory of (ideally) every particle is determined.

Therefore, one need not assume that there is a single smoothly-varying velocity field

driving the motions of the particles. Since the particles can respond to both the

normal fluid and superfluid components in He II, as discussed in detail in Chapter 4,
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particle tracking is more suitable for our investigations.

In order to track the motion of individual particles several factors are quite

important. Firstly, images of the tracer particles must be distinguishable from the

background. The contrast between particles and the background can be improved by

lengthening the exposure time, increasing the illumination intensity and selecting

appropriate cameras and optics. The particles should also appear circular in the

images — that is, the image intensity is highest for a pixel closest to the particle

center and the neighboring particles appear successively dimmer as the distance

from the center increases. If the particles move on the order of a pixel or more over

the duration of the exposure time then they will appear to be rod-like rather than

circular. Determining the position of a rod-like particle image is much less precise

than a properly resolved circular image. Lastly, particle displacements between

successive images should be less than the typical particle spacing. Obviously if only

a single particle is to be tracked then this constraint does not apply. However, on the

order of 104 particles per frame are typically tracked and therefore it is imperative

to have a sufficiently high frame rate that the particles typically move less than

1 pixel per frame. Thus, a balance between the exposure time, frame rate, typical

fluid velocities, and particle volume fraction must be struck in order to use this

technique.

Particle tracking, to the author’s knowledge, has never been used in flows

of He II before. As such, a particle tracking algorithm developed by Eric Weeks

and John Crocker was adapted to suit the present purposes. A detailed tutorial

of the IDL algorithms that we use can be found in Ref. [96]. An example of the
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Figure 3.13: An example batch of commands used to particle track a
movie using the IDL particle-tracking algorithm.

Figure 3.14: Example trajectories obtained by the particle-tracking al-
gorithm. Each curve corresponds to a single particle trajectory.
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series of commands in IDL used to track a particular movie is shown in Fig. 3.13.

The output of this series of commands is a file with the first column denoting the

particle identification number, the second is the frame number, the third is the x-

position in pixels, the fourth is the z-position in pixels and the last is the radius

of gyration, which may be used to distinguish tracer particle size for statistical

purposes. Examples of typical particle trajectories are shown in Fig. 3.14. All of

the algorithms implemented to then analyze the trajectories have been developed

by the author and some are given in Appendix A.
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Chapter 4

Tracer Particles in Superfluid 4He

The greatest distinction of our experiments is the ability to directly observe

the motions of both the normal fluid component and the quantized vortices in He II.

Previous experiments by Yarmchuk, Gordon and Packard [33] have observed where

the vortices end on a boundary as shown in Fig. 1.3(a). More recent experiments

led by van Sciver [97–101] have examined particles interacting with the normal

fluid component using PIV. The former studies could not observe the dynamics and

structure of the quantized vortices in the bulk of the fluid and the latter cannot

observe the motions of quantized vortices since they use PIV.

The dynamics of tracers in superfluid flows are more complicated than in

viscous fluids since the particles can interact with the quantized vortices [43] in

addition to the normal fluid. The details of these interactions depend upon the

temperature, particle characteristics, line-length density of quantized vortices, and

flow properties. Progress has been made in trying to understand precisely what

tracer particles “track” in superfluid turbulence by Barenghi and coworkers [44–

48], though many issues remain unanswered. In this chapter† we will introduce the

mechanism by which particles can be trapped by quantized vortices, discuss the

dependencies of this mechanism and examine the effects tracer particles can have

†The details of this chapter follow closely the discussion presented by Paoletti et al. in [5].

94



on the dynamics of quantum fluids.

4.1 Particle-trapping Mechanism

The trapping of ions and particles by quantized vortices in superfluid 4He is

generally agreed to occur by a mechanism proposed by Parks and Donnelly in 1966

[43]. The superfluid motion around a locally straight vortex can be expressed in

cylindrical coordinates {s, φ, z} as vφ = κ/2πs where κ = h/m = 9.97× 10−4 cm2/s

is the quantum of circulation with h as Planck’s constant and m the mass of a 4He

atom. Trapping a particle or bubble on the vortex core causes a reduction in the

kinetic energy owing to the displaced circulating superfluid helium. The reduction

in energy is maximized when the particle is centered on the vortex core (where the

kinetic energy density is largest). As a particle approaches a vortex, a gradient in

energy causes an attractive force — although some dissipative mechanism is required

to prevent the particle from oscillating radially. Drag between the particle and the

normal fluid likely serves to dissipate the energy as the particle approaches the

vortex.

The attractive force between a tracer particle and a quantized vortex can

equivalently be described by pressure gradients. The Bernoulli pressure around the

vortex resulting from the superfluid motion is

P = − ρsκ
2

8π2s2
, (4.1)

where ρs is the superfluid density and κ the quantum of circulation [70]. The normal

force on the particle is obtained by integrating the pressure gradient on the surface
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of the particle. If the particle is many particle diameters away from the vortex core

the total force may be approximated as

Ftrap =
4

3
πa3∇P ∼ −s−3ŝ. (4.2)

Thus a local pressure gradient attracts particles on to the vortex, dissipatively me-

diated by Stokes drag.

This trapping mechanism is different than for a viscous vortex. Since superfluid

flow has zero viscosity, the particle is not dragged into orbit around the vortex. In

a viscous fluid, particles orbit azimuthally producing a centrifugal force in addition

to the radial pressure gradient. If a small particle is neutrally buoyant then the

centrifugal force is balanced by the pressure gradient and the particle circulates

the vortex at constant cylindrical radius. Particles that are less dense than the

fluid would be radially drawn to the vortex core whereas denser particles would be

expelled to the boundaries. In a superfluid, all particles, independent of density are

drawn to the quantized vortices. We have observed that solid hydrogen (less dense

than liquid helium) and solid neon (denser than liquid helium) may be trapped by

the quantized vortices.

4.2 Particle-trapping Dependencies

The forces that act on a tracer particle in a fluid may be broken into two

categories — those acting on the volume of the particle and normal surface forces.

The only force acting on the volume of a particle in our experiments is gravity. The

density of the solid hydrogen particles (ρH2 = 0.088 g/cm3) is slightly less than that
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of the liquid helium (∼ 0.145 g/cm3) and the particles are therefore positively buoy-

ant. The buoyancy force scales with the particle volume, whereas normal surface

stresses scale with the surface area. Therefore, keeping all else constant, the ratio

of the surface forces to buoyancy increases with decreasing particle size. Since we

use constant density for all of our solid hydrogen tracer particles, smaller particles

are more desirable since the effects of buoyancy are reduced relative to dynamic

pressure and viscous forces.

The surface stresses acting on the particle are very important to the dynam-

ics. Specifically, the two most important forces in our experiments are Stokes drag

induced by the normal fluid flow and trapping forces produced by the quantized

vortices. The interplay of these two determines whether the particles simply follow

the normal fluid or get trapped or scattered by the quantized vortices.

As mentioned above, when the particle is far from the vortex the trapping

force may be approximated by Ftrap = 4
3
πa3∇P ∼ −s−3ŝ, where a is the particle

radius, P = −ρsκ2/8π2s2 the pressure, and s the cylindrical radius from the vortex

core. The pressure P is a linear function of the superfluid density ρs, which depends

nonlinearly on temperature. The superfluid density is a small fraction of the total

near the λ-transition (see Fig. 2.5), thereby making the trapping force weak.

Viscous drag is essential to the particle trapping mechanism, since it provides

a means of dissipation as the particle falls into the vortex core. However, Stokes

drag may also serve a different role. Vortex motions that oppose the flow of the nor-

mal fluid may dislodge particles from the vortices since Stokes drag is still relevant.

Therefore, at any temperature, two regimes always exist: (i) for sufficiently low rela-
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tive velocities between the normal fluid and the quantized vortex the trapping force

dominates and the particles remain trapped and (ii) for sufficiently high relative

velocities, Stokes drag is able to dislodge the particles from the vortex cores. The

resulting picture is that understanding the population of trapped and untrapped

particles must necessarily depend on both temperature and relative flows between

the normal fluid and the quantized vortices.

The competition between weak trapping forces near the λ-transition and nor-

mal fluid drag is evidenced in our experiments by the lack of trapped particles

within ∼ 50 mK of transition. In classical fluids, the difference in velocity between

two neighboring fluid elements typically follows an exponential distribution centered

on zero. The difference in the velocity of the quantized vortices vL and vn need not

be exponentially distributed about zero. In fact, we typically observe large velocity

differences between these two flow fields, particularly in thermal counterflows. Par-

ticles attempting to trap on such counterflowing vortices will experience a Stokes

drag proportional to |vn − vL|. If this force exceeds the maximum value of Ftrap,

which is weakest near Tλ then particles may only be scattered, rather than trapped,

by the vortices.

To explore this temperature dependence we observe the particle dynamics as

the system continues cooling below the λ-transition at a rate of -152 μK/s with a

4 mW/cm2 heat flux applied to gently drive the quantized vortices in opposition

to the normal fluid motion. The relative velocity vδ between all possible pairs of

particles initially separated by less than 150 μm is determined by fitting the pairwise

separation δij(t) ≡ |ri(t)− rj(t)| to the form δij(t) = vδt+ δij(0), where ri(t) is the
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Figure 4.1: Statistics of pairwise particle separation velocities vδ. The
distributions are computed from particle trajectories while the system is
cooled at a rate of -152 μK/s. A 4 mW/cm2 heat flux is applied to drive
a gentle counterflow between the normal fluid and superfluid. Each data
set spans 20 seconds with temperature values 51 < Tλ − T < 53 mK for
the black circles and 55 < Tλ−T < 57 mK for the red triangles. Only the
lower temperature data (red triangles) show clear signs of counterflowing
particles, evidenced by the tail for large vδ, which signifies strong drag
forces.
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two-dimensional position vector of particle i at time t. The distributions of the

values of vδ are shown in Fig. 4.1. Each data set spans 20 seconds with temperature

values 51 < Tλ − T < 53 mK for the black circles and 55 < Tλ − T < 57 mK for

the red triangles. Only the lower temperature data (red triangles) show clear signs

of counterflowing particles, evidenced by the tail for large vδ, which signifies strong

drag forces. We attribute this stark distinction to a crossover between Stokes-drag-

dominated behavior at higher temperatures to a regime where particles are able to

remain trapped on the quantized vortices.

In addition to temperature and flow properties, the competition between

Stokes drag and particle trapping also depends upon particle size. Stokes drag

scales linearly with the radius of the particle. The particle trapping force arises

from excluded kinetic energy of circulating superfluid and therefore may be thought

of as depending on the average kinetic energy density of the excluded superfluid.

Since the kinetic energy density is greatest near the vortex core, the average kinetic

energy density excluded by a trapped particle increases with decreasing particle size.

Therefore, smaller particles, as we have observed, are more likely to become trapped

by the quantized vortices. The technique of generating very small hydrogen parti-

cles is partly responsible for our ability to make the present observations. Ions and

electron bubbles would be even more greatly trapped as evidenced by the historical

and current work using these systems [30, 33, 43].
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4.3 Effects of Particle Concentration

The hydrogen particles used in our experiments are not completely passive

tracers. By trapping a particle on the core of a vortex, the vortex also becomes

trapped on the particle. Thus, a particle trapped on a quantized vortex increases

the coupling between the vortex and the normal fluid through the action of Stokes

drag acting on the particle. Quantized vortex trapping on the hydrogen particles is

analogous to the pinning of dislocations and domain walls on impurities in a solid.

Realizing that the hydrogen particles may modify the stability and dynamics of the

vortices we have endeavored to reduce the particle size and concentration. In the

limit of very few, small particles, one might expect to obtain a minor modification

to the superfluid state.

The effects of the hydrogen tracers on the helium dynamics may be studied

by observing the system as one modifies the volume fraction of hydrogen. While a

systematic variation of the volume fraction remains a useful future project, this sec-

tion conveys our general observations on volume fraction effects over the last several

years. While we give approximate volume fraction values below, the phenomenology

likely depends upon the particle size distribution, the quantized vortex population

(line-length density), and temperature.

The smallest volume fractions (φH2/φHe < 10−8) are realized as only tens of

micron-sized solid hydrogen particles in our field of view (8 mm × 8 mm × 100 μm)

as shown in Fig. 4.2(a). The motions of the particles in superfluid helium, depend-

ing upon the various effects discussed above, split into two classes. Many of the
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hydrogen particles smoothly drift via Stokes drag with the normal fluid. A subset of

the observed particles, though, have velocities that clearly differ from this smooth,

background velocity field. At times, the motions of closely spaced particles can even

be antiparallel. We interpret the second observation as suggesting the trapping of

particles by the quantized vortices.

At moderate volume fractions (10−8 < φH2/φHe < 10−6) we observe multiple

particles on each evident quantized vortex, e.g. Fig. 4.2(b). Unexpectedly, the

particles are often uniformly spaced along the vortex core. These dotted lines appear

with spacings that are both uniform on one vortex and do not substantially vary

between vortices [1].

The observations of the uniform spacing imply particle-particle interactions

present when they are trapped on the quantized vortices. We might hypothesize

that the interaction originates from an inter-particle potential with both short-range

repulsion (at least hard-core), and a long-range attraction such that the balance

sets an equilibrium spacing (see Fig. 4.2(b)). The particle spacing is typically ∼

100 μm, which is much larger than the particle size. These observations imply that

the effective interaction between trapped particles differs from the bare interaction

present in the bulk of the fluid.

At yet higher volume fractions of hydrogen (φH2/φHe > 10−5), the non-passivity

of the hydrogen particles is clearly evident as seen in Fig. 4.2(c). Often, the particles

come to fully cover the cores of the vortices. In cases where a continuous cylinder

of solid hydrogen is present on the vortex core, branches and networks of vortices

are stabilized, which should not be the case in the absence of particle loading.
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Figure 4.2: Intensity-inverted images showing varying hydrogen volume
fractions. The images in (a) and (c) show the full field of view (8 mm
× 8 mm) and the image in (b) is 6.78 mm × 6.78 mm. (a) The low-
est volume fraction (φH2/φHe < 10−8) used in our experiments. (b) A
moderate volume fraction 10−8 < φH2/φHe < 10−6), which often results
in multiple particles trapped on each visible vortex. In such cases, the
trapped particles tend to be uniformly spaced along the vortex core.
(c) The more extreme effects of very large hydrogen volume fractions
(φH2/φHe > 10−5) here in a rotating container. By completely decorat-
ing the core of a quantized vortex, the hydrogen may serve to stabilize
branches and networks of vortices that should be unstable in their ab-
sence.
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Chapter 5

Thermal Counterflows

The mechanism of heat transport described by the two-fluid model of Tisza

[37] and Landau [38] has been a cornerstone of He II theory for more than half a

century. The model predicts that a heat flux q will drive flows in the normal fluid

and superfluid components described by

vn =
q

ρST
, (5.1)

vs = −ρn
ρs
vn. (5.2)

Despite the long-standing acceptance of this prediction, there has yet to be a direct

experimental confirmation of Eqs. (5.1, 5.2). In this chapter, we describe the results

of our thermal counterflow studies that provide the first direct observation of the

two-fluid nature of He II.†

5.1 Previous Work

Zhang and Van Sciver used solid polymer micro-spheres as tracers in counter-

flow turbulence [98]. The experiments were performed over the temperature range

1.62 K < T < 2.0 K for heat fluxes from 110 to 1370 mW/cm2. The velocities of the

particles were measured using the particle image velocimetry (PIV) technique. The

most striking result from these experiments was that the velocities of the particles

†The details of this chapter follow closely the discussion presented by Paoletti et al. in [5].
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Figure 5.1: Parameter space diagram summarizing the thermal counter-
flow experiments.

were approximately one half the average velocity of the normal fluid, independent

of temperature. This disparity was attributed to momentum transfer between the

tracer particles and the quantized vortices. Specifically, Zhang and Van Sciver pro-

posed a form for a body force that would act on the tracer particles, which was

shown to produce a temperature-independent velocity difference between vn and

the observed particle velocity in agreement with their observations. The results of

these experiments were discussed theoretically by Sergeev et al [45]. By applying

theoretical arguments, they were able to obtain quantitative agreement with the

experiments but at odds with Eq. (5.1).
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Figure 5.2: Example particle trajectories from a counterflow with T =
1.95 K and q = 36 mW/cm2. Trajectories that move upward with the
normal fluid (vz > 0) are shown in black while tracers trapped in the
vortex tangle (vz < 0) move downward and are shown in color.

5.2 Particle Trajectories

The experimental parameters used in our studies are summarized in Fig. 5.1.

We characterize the resulting dynamics by analyzing the particle trajectories. Sev-

eral example trajectories from a typical counterflow experiment are shown in Fig. 5.2.

Two distinct types of behavior are observed: (i) trajectories that move upward in the

direction of the heat flux (ẑ) are denoted by black and (ii) trajectories that oppose

this motion and move downward (−ẑ) are shown in color. The upward trajectories

appear smooth and remarkably uniform, whereas the downward trajectories can be

quite erratic. In the context of the two-fluid model, we interpret upward-moving

particles as being dragged by the normal fluid while downward-moving particles as

trapped in the vortex tangle.
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5.3 Effects of Temperature and Vortex-line Density

To test these interpretations we compute distributions of the vertical and hor-

izontal velocity components, vz and vx, which are shown in Figs. 5.3 and 5.4. The

velocities are computed by performing a least-squares fit of the form x(t) = vt+x(0)

for 0 < t < 0.1 s. In most cases the vertical velocity distributions are bimodal, as

expected. The fraction of downward-moving trajectories increases with: (i) de-

creasing temperature for constant heat flux and (ii) increasing heat flux at constant

temperature. These trends may be attributed to: (i) the increase in vortex line-

length density that occurs by increasing either |vn − vs| or q and (ii) the increase

in the particle trapping force with decreasing temperature. It is important to note,

however, that for each temperature (heat flux) particles will cease to trap in the

vortex tangle above a given heat flux (temperature) as discussed in Subsection 4.2

(e.g. black circles in Fig. 5.3(a)).

The distributions of vx also exhibit a general trend; Pr(vx) broadens with

increasing fraction of downward-moving trajectories, as shown in Fig. 5.4(a). Such

behavior is exhibited by the trajectories shown in Fig. 5.2 consisting of upward-

moving trajectories that are vertical with vx near zero for all times, whereas particles

trapped in the vortex tangle move erratically in the x-direction, producing a broad

distribution of horizontal velocities. This distinction is further illuminated by the

distributions of the trajectory angle θ ≡ arctan(vz/vx) shown in Fig. 5.4(b). In

every experiment Pr(θ/π) has a sharp peak near θ/π = 0.5, which corresponds to

trajectories aligned with the direction of the heat flux, and thereby aligned with
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Figure 5.3: Vertical velocity statistics of example thermal counterflow ex-
periments. All of the vertical velocity vz distributions are scaled by the
observed normal fluid velocity vno as given in Fig. 5.5(a). The predicted
values of the superfluid velocity vs given by eq. (5.2) and scaled by vno
are shown by vertical dashed lines. (a) Variation of vertical velocity dis-
tributions with varying temperature for (approximately) constant heat
flux with the experimental parameters given by the legend. (b) Varia-
tion of vertical velocity distributions with varying heat flux at constant
temperature with the experimental parameters given by the legend.
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Figure 5.4: Horizontal velocity and trajectory angle statistics for exam-
ple counterflow experiments with the parameters given by the legend in
(a). (a) Horizontal velocity vx distributions. (b) Distributions of the
trajectory angle θ ≡ arctan(vz/vx), with θ/π = 0.5 corresponding to
trajectories aligned with the direction of the heat flux (ẑ). The inset
shows only trajectories that move downward (vz < 0).
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vn. In cases with a significant fraction of downward-moving trajectories, a peak

also develops at θ/π = −0.5, as shown in the inset of Fig. 5.4(b). These secondary

peaks are often flat and centered at θ/π = −0.5. We believe that these observations

can be explained by mutual friction [19–21], which is one source of the horizontal

velocity component for the vortex tangle. However, to do so, the geometry of the

vortices needs to be specified and the subject may, therefore, be more appropriate

for numerical simulations.

5.4 Measured Normal Fluid and Vortex Tangle Velocities

To compare with eq. (5.1), the observed normal fluid velocity vno is computed

for each experiment by fitting a Gaussian to the vertical velocity distribution func-

tion Pr(vz) for vz > 0. Similarly, the ẑ-component of the vortex tangle velocity

vL is computed by fitting a Gaussian to Pr(vz) for vz < 0. If there is no peak for

vz < 0, as is the case for the black circles in Fig. 5.3(a), we do not compute vL.

The observed normal fluid velocities are shown in Fig. 5.5(a). For all experimental

parameters vno agrees with vn, giving a quantitative confirmation of eq. (5.1). The

values of vL, though, are systematically less negative than vs, particularly for higher

heat fluxes and temperatures, as shown in Fig. 5.5(b). This may be due to mutual

friction, but we cannot comment further on the observed values of vL.
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Figure 5.5: (a) Observed normal fluid velocity vno as a function of the
calculated normal fluid velocity vn given by eq. (5.1). The dashed line
corresponds to the prediction vno = vn. The horizontal error bars in both
plots are due to temperature variations over the course of the run while
the vertical error bars are given by the standard deviations computed
by the Gaussian fits to each peak. (b) Vertical velocity of the vortex
tangle vL as a function of the calculated superfluid velocity vs given by
eq. (5.2). The dashed line corresponds to vL = vs.
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5.5 Discussion

The results of these studies do not agree with the previous experiments of

Zhang and van Sciver as discussed in [98]. Mostly notably, we find that tracer parti-

cles that are not trapped by quantized vortices follow closely the calculated normal

fluid velocity given by eq. (5.1). Zhang and van Sciver [98], on the other hand,

found that the measured particle velocity vp,a was approximately 0.5vn for the en-

tire range of temperatures they explored (see Fig. 1 in Ref. [98]). Several important

features must be considered when comparing these studies. The velocities in Ref.

[98] were determined using PIV, which computes the velocity using cross-correlation

of sub-images containing many tracer particles and is designed for smoothly varying

velocity fields. However, as evidenced in Fig. 5.2, the velocity field as computed

from the particle trajectories is not smoothly varying owing to the interaction with

quantized vortices. By co-mingling tracers that are moving primarily under the in-

fluence of Stokes drag with those trapped in the vortex tangle when measuring the

velocity, it is very difficult to disentangle the effects of the quantized vortices on the

tracer particles. The heat fluxes used in the two sets of experiments (110 to 1370

mW/cm2 in Ref. [98] and 13 to 91 mW/cm2 here) are disjoint but adjacent. Even

so, there is a discrepancy between our data and those of Zhang and van Sciver. This

discrepancy may be due to the difference in analysis technique. In particular, Zhang

and Van Sciver’s analysis did not allow for the influence of quantized vortices on

the trajectories of individual tracer particles, as we have done.

The theoretical explanation given in Ref. [45] by Sergeev et al. for the results
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of Zhang and Van Sciver also appears to be different from ours. According to their

calculations, we should have also seen significant deviations from eq. (5.1). The

underlying assumption in their calculation that seems to break down is that every

particle is affected by the quantized vortices. As we have shown in Fig. 5.2, a frac-

tion of the particles move on vertical trajectories unaffected by quantized vortices,

whereas other trajectories are dominated by their motion. Lastly, the temperature

dependence in both our experiments and previous work must be better understood.

In our experiments, there is a very clear temperature dependence of the effects of

the quantized vortices on the particle motions as evidenced by the varying fraction

of downward-moving trajectories. However, in both the experiments of Zhang and

Van Sciver and the theoretical explanation given by Sergeev et al., the claim is made

that the disparity between the particle velocities and vn is independent of tempera-

ture. Clearly the motion of tracer particles in thermal counterflow requires further

attention.
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Chapter 6

Reconnection

Reconnection has long been considered to play an important dissipative role

in quantum turbulence. Vinen [19–21] described how the balance of reconnection

and mutual friction leads to saturated vortex line lengths in counterflow turbulence,

which is analogous to the saturation of dynamo action [8] or the magnetorotational

instability [9] produced by magnetic reconnection in astrophysical plasmas. In this

chapter we provide a detailed characterization of approximately 20,000 individual

reconnection events in He II.† We compare the dynamics before and after individual

events to those predicted by dimensional arguments in Eq. (2.30). The possible

temperature dependence of the dynamics, anisotropy and time-reversibility are also

explored.

6.1 Pulsed-Counterflow Experiments

A quantum vortex tangle and its accompanying cascade of reconnection events

is induced by reproducibly driving the system away from equilibrium by a ther-

mal counterflow, which increases the total vortex line length present in the system

[19–21, 54]. Upon cessation of the counterflow, we acquire data while the system

relaxes toward equilibrium [29]. A fixed heat flux in the range 0.058 W/cm2 < q <

†The details of this chapter follow closely the discussion presented by Paoletti et al. in [6].
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Figure 6.1: Plot of the vortex line length density L and heat flux q as
a function of time measured from when the heater is turned off at toff .
The vortex line length density is determined by numerically integrating
the Vinen equation given in Eq. (2.27). This technique provides a re-
producible means of driving the system away from equilibrium since L
reaches a statistically steady-state determined by the temperature and
heat flux.
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0.17 W/cm2 drives the system for approximately 5 s, after which it is allowed to

relax for approximately 10 s before repeating the process (see Figs. 6.1 and 6.2).

Figure 6.1 shows the evolution of the vortex line length density L as a function

of time measured from the moment the heater is turned of at toff . This technique

allows us to reproducibly drive the system away from equilibrium, since L reaches a

statistically steady state. All of the data presented in this chapter is for times when

the heater is off.

6.2 Visualizing and Identifying Reconnection Events

Near the reconnection moment t0, reconnecting vortices move with high, atyp-

ical velocities and accelerations. An example of a reconnection event is shown in

Fig. 6.3 (also see Fig. 2 in [3] and note that reconnection is clearly evidenced in the

online movies in [4]). In this example, the particle density is high so that both vor-

tices are marked by multiple trapped hydrogen particles. The two vortices merge,

exchange tails, then separate as indicated by the velocity vectors in the middle row

of images in Fig. 6.3.

Since the hydrogen particles are not completely passive [5], the hydrogen vol-

ume fraction in the pulsed counterflow experiments presented here has typically

been kept one to two orders of magnitude lower than that shown in Fig. 6.3. For

such low volume fractions, each identified vortex has only one to a few hydrogen

particles trapped, thereby minimizing the effects of the hydrogen on the reconnec-

tion dynamics [5]. A reconnection event is characterized, then, by a pair of particles
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Figure 6.2: Parameter space diagram summarizing the ranges of heat
fluxes q and temperatures T for the pulsed counterflows used to generate
quantum turbulence.
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Figure 6.3: Contrast-enhanced negative images of particles trapped on
reconnecting vortices (top) along with velocity vectors (middle) and our
interpretation of the pre- and post-reconnection configurations of the
vortices denoted by the red and blue lines (bottom) with time measured
from t0 at T = 1.90 K. The green vectors show the background drift
that is subtracted from all velocity vectors. The red and blue velocity
vectors (middle) correspond to the red and blue marked vortices in the
bottom images. The volume fraction of hydrogen in these images (10−5)
is higher than for all the pulsed counterflow experiments discussed below.
Reconnection is particularly unambiguous in the online movies in [4].
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rapidly approaching or separating. The number of possible particle pairs analyzed

is ∼ 1010, which requires an ad hoc criterion to determine likely reconnection events.

We define particles i and j as marking a reconnection event at time t if the pairwise

separation δij(t) = |ri(t)− rj(t)| satisfies

ξij ≡ δij(t± 0.25 s)

δij(t)
> 4, (6.1)

where ri(t) is the two-dimensional projection of the position of particle i at time t and

the plus (minus) sign indicates particles that separated after (approached before) an

event, which we label as forward (reverse) events. We choose the temporal duration

of 0.25 s to allow a sufficient range to perform the power-law fits to the data while

curtailing greater times, which are dominated by boundary effects and the presence

of neighboring vortices. The criterion (6.1) excludes all but a fraction of possible

pairs, namely ∼ 5× 104 forward and a similar number of reverse events.

It is important to note that we are assuming δ(t) 
 δij(t); however, the parti-

cles (i, j) may not be located as close as desirable to the point of reconnection. We do

not observe any correlations between the measured quantities discussed below and

the initial particle separations or the values of ξij as defined in (6.1); nevertheless,

more detailed theoretical analyses of vortex reconnection are needed to reveal and

quantify systematic effects that may be caused by interpreting our measurements of

δij(t) as good approximations to δ(t).
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6.3 Arbitrary Power-Law Model

We characterize the dynamics of reconnection by measuring the separation

δ(t) 
 δij(t) of pairs of particles (i, j) that meet the criterion (6.1). As mentioned

in Section 2.5, previous dimensional and theoretical arguments predict that δ(t)

behaves asymptotically as a power-law with a scaling exponent α = 0.5. To test

this hypothesis we fit our data to an arbitrary power-law of the form

δ(t) = B|t− t0|α. (6.2)

The values of B and t0 are determined by a linear least-squares fit of [δ(t)]1/α for

500 values of α evenly-spaced in the interval 0 < α < 2. For each set of {α, B, t0}

we compute the error in the fit

χ2(α) ≡ 1

n

n∑
m=1

[
δfitm − δm

σ

]2
, (6.3)

where m denotes the movie frame, σ = 4 μm (0.25 pixels) is an estimate of the

uncertainty of the particle positions, and n = 15, 20, 25 for data collected at 60, 80,

or 100 frames per second, respectively. We then choose the set of {α, B, t0} that

minimizes χ2 (see Fig. 6.4).

The measured separations δ(t) for four forward events are shown in Fig. 6.5,

along with the predicted asymptotic form δ(t) = (κ|t− t0|)1/2 for comparison. Fits

to (6.2) are shown as solid lines with the scaling exponent α given in the legend.

The most frequent fitted exponents cluster around the predicted value of α = 0.5

and their corresponding amplitudes B are of order κ1/2; however, there is a broad

spread in both quantities.
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Figure 6.4: Variation of χ2(α) normalized by its minimum value χ2
min =

0.73 as a function of the scaling exponent α for the event shown by the
red squares in Fig. 6.9 below. This event was observed at a temperature
T = 1.90 K, but it should be stressed (as also for Figs. 6.5, 6.8, and
6.9) that fully comparable plots can be found at all temperatures in the
range explored (1.70 K< T < 2.05 K). We choose the parameters of the
arbitrary power-law fit {α, B, t0} that minimize χ2 as a function of α
defined by (6.3).
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Figure 6.5: Four forward events at T = 1.90 K well fit by the arbitrary
power-law expression (6.2). Symbols denote the measured separation
δ(t) of pairs of particles on reconnecting vortices with an example error
bar σ = 4 μm while solid lines show fits to δ(t) = B|t− t0|α with α given
in the legend. The predicted asymptotic scaling δ(t) = (κ|t − t0|)1/2 is
shown by the purple dashed line.
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Figure 6.6: (a) Normalized frequency distributions of α computed for
19,150 forward events (black circles) and 18,900 reverse events (red
squares). Note that the data displayed here (as also in Figs. 6.7, 6.10,
6.11, 6.13, 6.16, and 6.17 below) have been collected from the range
of heat fluxes and temperatures described in Fig. 6.2. The mean val-
ues of α for forward and reverse events are 0.68 and 0.69, respectively.
(b) Two-dimensional contour diagram of χ2 versus α for forward events.
The peak near α = 0.5 with low values of χ2 indicates that (6.2) best
describes events with dynamics near those predicted in (2.30).
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Distributions of α for both the forward and reverse events, determined from

fifty distinct experimental heat pulses, are shown in Fig. 6.6(a). The distributions

are formed from events with χ2 < 4. Approximately 40% of the 50,000 pairs that

meet the criterion in (6.1) meet this χ2 criterion. Both distributions are asymmetric

but peaked within 10% of the predicted value α = 0.5. Furthermore, as shown in

Fig. 6.6(b), events with fitted values near 0.5 typically have lower values of χ2.

The amplitudes B for the same events are strongly correlated with the scaling

exponent α as shown in Fig. 6.7. We find that events with α 
 0.5 have amplitudes

B 
 √
κ, as expected from dimensional analysis. However, de Waele and Aarts [57]

measured B 
 √
κ/2π in numerical simulations of quantized vortex reconnection in

superfluid 4He using line-vortex methods; this is approximately 30% of our experi-

mentally determined value. The time-scales in our experiments differ greatly from

these numerical simulations; de Waele and Aarts determined their value of B for

0 < t0− t < 3 μs, whereas our time-scales span 1 ms < |t− t0| < 100 ms. In addition

de Waele and Aarts quote an amplitude only for two initially antiparallel vortices;

other initial orientations might yield different values for B. On the other hand,

we observe only a two-dimensional projection of each reconnection event, which

would lead us to underestimate B, potentially furthering the discrepancy. Clearly,

resolving the source of this discrepancy warrants additional investigation.

The predicted scaling of α = 0.5 is derived from the assumption that the

quantum of circulation κ is the only relevant parameter over the length- and time-

scales of interest. This assumption is valid in the context of line-vortex methods,

and holds approximately for the Gross-Pitaevskii equation at length scales large
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Figure 6.7: Plots of the average fitted amplitude B̄ as correlated with
the scaling exponent α for 19,150 forward events (black circles) and
18,900 reverse events (red squares). The error bars indicate the standard
deviation of the data within the given range of α. The blue diamonds
at α = 0.5 show B̄ = κ1/2 to compare to the predicted scaling. (a) The
entire range of α; (b) range restricted to 0 < α < 1.
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compared with the core diameter. However, deviations from α = 0.5 might be

obtained, at least conceptually, in two ways. First, adapting arguments that were

proposed for multiscaling solutions of the Euler equation related to intermittency in

classical fluid turbulence [102], one might suppose the precise value of κ is irrelevant

to the dynamics of reconnection on the length scales we observe; then it should

be possible to form a continuous family of solutions with differing values of α.

However, it is difficult to imagine conditions under which κ would be irrelevant in

our experiments given that the observed velocity magnitudes seem closely related

to κ and to the distances involved, as expected.

Second, if another parameter with units different from κ were relevant then

it is possible to rationalize reconnection dynamics with α �= 0.5. If any parameter

such as a vortex-core length-scale, core surface tension, typical intervortex spacing,

local velocity gradients, or system size, were relevant to the reconnection dynamics,

then we may construct putative solutions with variable values of α. For example,

if a core surface tension γ were relevant, we could contemplate an expression of the

form

δ(t) = B|t− t0|ακ2−3α(γ/ρ)2α−1, (6.4)

where we use the density ρ to construct a kinematic surface tension γ/ρ. Note

that for α = 0.5 we recapture the predicted behavior (2.30). The value of α for

a particular reconnection event, in this interpretation, is either determined by the

allowed values of α from the nonlinear equations of motion, or should that not be

unique, additionally by the initial and boundary data for each particular event.
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Further deeper theoretical investigations are required to determine if such solutions

could be realized under experimental conditions.

6.4 Correction-factor Expression

The dynamics of reconnection may alternatively be described by supplement-

ing the predicted asymptotic scaling of (2.30) with a correction factor. The simplest

and natural expectation is the three-parameter form

δ(t) ≈ A (κ|t− t0|)1/2 (1 + c|t− t0|) . (6.5)

To test this expression we have performed a linear least-squares fit to determine A

and c for 500 values of t0 evenly spaced 125 μs apart (see Fig. 6.8); we then select

the set of {A, c, t0} that minimizes χ2 as defined in (6.3).

The measured separations δ(t) for four forward events are shown in Fig. 6.9,

along with the predicted scaling of (2.30) for comparison. Solid line fits to the

correction-factor expression in (6.5) describe the data well. Distributions of the

amplitude A, computed from the same fifty distinct experimental heat pulses used

to form Figs. 6.6 and 6.7, are shown in Fig. 6.10(a). As before, we require χ2 < 4.

For both the forward and reverse events, the distributions of A are peaked near

unity, in accord with the dimensional arguments; however as in Fig. 6.7, the values

typically exceed unity (so being about three times greater than found in the special

case studied numerically by de Waele and Aarts [57]). Events with A near unity

typically have lower values of χ2, as shown in Fig. 6.10(b), again supporting the

inferences based on dimensional analysis.
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Figure 6.8: Variation of χ2(t0) normalized by its minimum value χ2
min =

0.73 (black triangles) and the corresponding correction factor c (red cir-
cles) as a function of the time origin t0 for the event shown by the red
squares in Fig. 6.9 at T = 1.90 K. We choose the parameters of the
correction-factor expression {A, c, t0} that minimize χ2 as defined by
(6.3).
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Figure 6.9: Four forward events at T = 1.90 K well fit by the correction-
factor expression. Symbols denote the separation δ(t) of pairs of particles
on reconnecting vortices with an example error bar σ = 4 μm while solid
lines show fits to the correction-factor expression (6.5). The predicted
asymptotic form δ(t) = (κ|t− t0|)1/2 is shown by the purple dashed line.
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Figure 6.10: (a) Normalized frequency distributions of the amplitude A
for 19,600 forward events (black circles) and 19,300 reverse events (red
squares). Both distributions are broad with a peak at A = 1.25, the
means of the forward and reverse distributions of A being 1.25 and 1.23,
respectively. (b) Two-dimensional contour diagram of χ2 versus A for the
forward events. The peak near A = 1 at low values of χ2 indicates that
(6.5) describes optimally events with dynamics close to those predicted
in (2.30).
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The distributions of the correction amplitude c for the forward and reverse

events are shown in Fig. 6.11(a). The distributions are peaked at c = 0, indicating

that many events follow rather closely the simple scaling of (2.30). However, for

both the forward and reverse events, the distributions are broad compared to their

mean values of 0.63 and 0.71 s−1, respectively, signifying strong event to event

variation. The correction factor also varies systematically with the fitted value of

the time origin t0, as illustrated in Fig. 6.8 and easily understood algebraically.

Thus, uncertainties in the estimation of t0 will induce corresponding changes in

estimates for c.

It is useful to consider the magnitude of the correction term, since larger mag-

nitudes imply a greater departure from the asymptotic form (2.30). This departure

can be quantified by |c(t− t0)|, where the overbar implies a time-average over the

duration that we use to fit the data, namely 0 < |t−t0| < 0.25 s. The ensemble mean

value of |c(t− t0)| for both the forward and reverse events is 〈|c(t− t0)|〉 = 0.15,

but it ranges from 10−6 to values greater than unity. This implies that while the

deviations vary from event to event, they typically amount to less than ±20 % as

evidenced in Fig. 6.11(b).

The need to supplement the simple form (2.30), derived by dimensional anal-

ysis, with a correction factor stems from several potential sources. Independent of

a specific origin, one must always expect a subdominant term in asymptotic power-

law scaling forms like (2.30) which describe behavior from a micro- or mesoscopic

domain up to some appropriate infrared cutoff at long times or large length-scales.

A functional form including a correction factor along with the dominant power-law
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Figure 6.11: (a) Normalized frequency distributions of the correction
amplitude c for 19,600 forward events (black circles) and 19,300 reverse
events (red triangles). (b) Normalized distributions of the magnitude of
the correction factor |c(t− t0)| time-averaged over 0.25 s for each trajec-
tory for the forward (black circles) and reverse (red triangles) events.
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allows for a crossover between scales. In our case, one certainly should expect devi-

ations from (2.30) on length scales comparable to the typical intervortex spacing of

0.1 to 1.0 mm. Indeed, if one introduces a correction length scale, say l, by rewriting

the correction term as

c|t− t0| ≡ ±κ|t− t0|/l2, (6.6)

for forward and reverse trajectories, one finds that the corresponding forward and

reverse mean values of c correspond to l = 0.40 mm and 0.38 mm, respectively. Thus

the dominant correction may well represent the influence of neighboring vortices and

their ability to distort the observed trajectories.

In addition, however, other spatial and temporal aspects of the local environ-

ment may also significantly affect the dynamics of reconnection, beyond the leading

behavior accounted for by dimensional analysis. Local velocity gradients or other

initial and boundary conditions could all produce deviations from pure square-root

scaling, thereby necessitating a nonzero correction factor. More intriguing theo-

retically, however, and challenging experimentally, is the possibility of nonanalytic

correction terms such as cθ|t− t0|θ with θ nonintegral. The presence of such terms

with nontrivial values of θ 
 0.5 is well established in the study of critical phenom-

ena in ferromagnets, superfluids, at gas-liquid transitions, etc.: see, e.g., [103–105].

6.5 Effects of Temperature

The experiments are conducted between 1.70 K< T < 2.05 K, which may also

broaden the above distributions since many of the physical parameters describing
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Table 6.1: Summary of the temperature ranges, number of events, peak values of the
amplitude A and correction amplitude c, as well as the full-width at half-maximum
(FWHM) values of A and c for the normalized frequency distributions shown in Fig.
6.12.

Lowest Middle Highest
Range of T (K) 1.70 – 1.88 1.88 – 1.96 1.96 – 2.05
Forward Events 8,000 6,000 5,600
Peak A 1.24 1.14 1.14
FWHM A 0.85 – 1.60 0.88 – 1.57 0.74 – 1.52
Peak c (s−1) 0.41 0.10 0.10
FWHM c (s−1) −0.80 – 1.70 −0.98 – 1.65 −1.0 – 1.18

superfluid 4He vary with temperature. To examine this possibility, we divided the

data into three distinct temperature ranges each composed of an equal number of

pulses (see Table B.6) then recomputed the distributions of A and c, as shown in

Fig. 6.12 and summarized in Table 6.1. The distributions show at most a very weak

temperature dependence and the pronounced event to event variation seen in Figs.

6.10 and 6.11 persists.

6.6 Model Comparison

The two expressions (6.2) and (6.5) are both modified versions of the asymp-

totic dynamics which suggest somewhat distinct theoretical interpretations. In both

cases, the majority of the fitted events exhibit behavior very similar to the dimen-

sional predictions (i.e., α = 0.5 or c 
 0); although, both also show strong variations

from event to event. One might hope to distinguish the quality of the two fits by

comparing the observed distributions of χ2, the overall deviation in the fits. In fact

and unsurprisingly, the two distributions shown in Fig. 6.13 are rather similar and
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Figure 6.12: Normalized frequency distributions of (a) the amplitude A
and (b) the correction amplitude c with example error bars for three
distinct ranges of temperature. The lowest temperature range (1.70 K<
T < 1.88 K) is shown by blue squares, the middle range (1.88 K< T <
1.96 K) is denoted by black circles, while the highest range (1.96 K< T <
2.05 K) is marked by red triangles. The details of these distributions are
summarized in Table 6.1.
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Figure 6.13: Normalized frequency distributions of χ2 from both the for-
ward and reverse events fit to the arbitrary power-law expression (black
circles) and the correction-factor expression (red triangles).
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no firm basis for making any distinctions emerges.

On balance at this point we favor the correction-factor expression as best

embodying our experimental data for quantized vortex reconnection. Our typical

observations of the dynamics show only relatively slight deviations from those pre-

dicted by dimensional analysis. It therefore appears that the dominant parameter

is indeed the quantum of circulation κ, which sets the leading scaling exponent of

α = 0.5. We expect the deviations from the corresponding asymptotic form in

our experimental range to be caused by the local environment and the initial and

boundary conditions of the event, as opposed to other parameters such as a surface

tension of the vortex cores. Indeed, such parameters would likely vary with tem-

perature and we have not observed any correlations between our fit parameters and

the temperature of the system over the range 1.70 K< T < 2.05 K. Experiments

and numerical simulations that control the local environment (velocity gradients,

neighboring vortices, strains, etc.) as well as the initial and boundary conditions

(configuration of the vortices, initial velocities and curvatures, etc.) could directly

test this hypothesis and are clearly desirable.

6.7 Time-Reversibility

The Gross-Pitaevskii equation as used for quantized vortex reconnection [58,

93] is fully symmetric under time reversal; thus solutions of the equation may also

be time-reversible symmetric. However, many previous theoretical works have con-

cluded that reconnection dissipates energy by emitting acoustic and Kelvin waves
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[17, 32, 106, 107] that may be absorbed by the boundaries, and so would break

locally the time-reversibility. We have compared the pre- and post-reconnection

dynamics by separately fitting forward and reverse events. All of the distributions

of the fit parameters (see Figs. 6.6, 6.7, 6.10 and 6.11) for the forward and reverse

events show striking similarity, as would be expected if the dynamics were statis-

tically time-reversible. While it is clear, however, that some energy is dissipated

overall in our experiments, as evidenced by the decay of the turbulent state, it is

not evidenced in the statistics of individual events.

Overall the close statistical similarity of the forward and reverse events suggests

an effective equilibrium has been established in quantum turbulence on the time

scales (≤ 0.25 s) we have investigated. However, this does not imply that individual

reconnection events are time-reversal symmetric. Three example trajectories of pairs

of particles on reconnecting vortices both before and after the event are shown in

Fig. 6.14. The square of the separation δ(t − t0)
2 is plotted to illuminate portions

of the trajectories show exhibit nearly square-root behavior. The black and blue

curves in Fig. 6.14 exhibit similar behavior before and after t0, whereas the red

curve shows markedly different dynamics.

We independently fit the pre- and post-reconnection separations to the correction-

factor expression as follows:

δ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
A− (κ|t− t0|)1/2 (1 + c−|t− t0|) if t < t0,

A+ (κ|t− t0|)1/2 (1 + c+|t− t0|) if t > t0.

(6.7)

The limited statistics of all the events observed are shown in Fig. 6.15 as scatter
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Figure 6.14: Three pairs of particles showing both reverse and forward
events. The square of the separation δ(t − t0)

2 is plotted as a function
of time measured from the fitted value of the reconnection moment t0
to illuminate the square-root behavior predicted by dimensional argu-
ments. The two events shown in black and blue exhibit similar behavior
before and after the event, whereas the data shown in red is clearly not
symmetric under time-reversal.
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Figure 6.15: Scatter plots of the correction-factor expression fit param-
eters separately determined pre- and post-reconnection as defined in
Eq. (6.7). Dashed lines correspond to A+ = A− and c+ = c− in panels
(a) and (b), respectively.
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plots of the pre- and post-reconnection fit parameters. The time-reversal symmetric

values of A− = A+ and c− = c+ are shown by dashed lines. Evidently, individual

reconnection events are not necessarily time-reversal invariant.

6.8 Anisotropy

In addition to the fit parameters, we may also investigate the total displace-

ment of the vortices before and after events. We define the displacement vector of

particle i as

Δri = ri(t0 + 0.25 s)− ri(t0) = x̂Δxi + ẑΔzi. (6.8)

Figs. 6.16(a) and (b) show the x̂- and ẑ-components of the displacement vectors for

all of the particles identified with forward (black) and reverse (red) reconnection

events. Indeed, the forward and reverse displacement vectors also show striking

similarities. The displacement vectors appear weakly correlated in the x-direction

and anti-correlated in the z-direction. This anisotropy is clearly exhibited in Fig.

6.17, which shows the difference in the displacement vectors of the pairs of particles

on reconnecting vortices. The forward and reverse events are found to be equally

affected by the these anisotropic effects.

We believe the anisotropy arises from the polarizing effect of the z-directed,

initiating thermal counterflow. A possible interpretation of the anti-correlation in

the z-direction is that the vortices are typically aligned or anti-aligned with the

direction of the counterflow. Previous studies have also observed [108] or argued for

[109–111] the presence of anisotropy in counterflow turbulence; although, subject to
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Figure 6.16: Scatter plots of (a) the x̂-component and (b) the ẑ-
component of the displacement vector Δri = ri(t0 + 0.25 s)−ri(t0) for
all forward (black) and reverse (red) event pairs (labeled as i = 1 and
j = 2 for all pairs).
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Figure 6.17: Normalized frequency distributions of the differences in x̂-
components (black circles) and the ẑ-components (red triangles) of the
displacement vectors for each pair of particles on reconnecting vortices.
The central peak at Δx1 −Δx2 = 0 signifies a strong correlation of the
particle trajectories in the x-direction while the minimum at Δz1−Δz2 =
0 implies a strong anti-correlation in the z-direction associated with the
z-directed thermal counterflow.
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interpretation, it is not clear that we agree on the polarization of the anisotropy.

6.9 Implications for Classical Turbulence

The scaling properties of velocity correlations in classical turbulence have re-

ceived a great deal of attention. In particular, much debate has addressed the val-

ues of the exponents ζn of the longitudinal structure functions 〈Δunr 〉 ∼ rζn , where

Δur ≡ u(x+ r)− u(x) for a single velocity component u parallel to r [12, 16, 112–

129]. In analogy to the predictions of α = 0.5 for quantized vortex reconnection,

Kolmogorov used dimensional arguments to predict ζn = n/3 [12]. His theory pivots

on the assumption that the dissipation per unit mass ε is the only relevant parameter

in the observed correlations and spectra. However, experimental observations report

values of ζn that deviate slightly from Kolmogorov scaling [114, 121, 122, 125, 128].

Typically, arbitrary values of the exponents ζn are fit to the data [16, 112–123, 126–

129], in analogy to our arbitrary power-law expression in (6.2). It should be noted,

however, that models with variable ζn presuppose that arbitrary exponents are al-

lowed, based either on the irrelevance of ε, or on dimensional grounds, by the ad-

mission of other relevant quantities that yield new power law forms [as illustrated

in (6.4)].

We argue, though, that another option is available – that of correction-factors

representing subdominant scalings. Similar connections between critical phenomena

and turbulence have been explored previously [124, 130]. Here we specifically suggest

that individual events in classical turbulence might be modeled both by a dominant
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Kolmogorov term and a correction factor arising from various causes including at

least the local neighborhood conditions and finite-size effects. The basic Kolmogorov

scaling derives from the fact that with vanishing viscosity one obtains 〈Δu3r〉 = −4
5
εr.

If one interprets these statistics as stemming from many individual “Kolmogorov

events” with Δur ∼ δ/(t − t0), then substituting r → δ above yields, at least on

a dimensional basis, δ ∼ ε1/2(t − t0)
3/2, which is also known as Richardson scaling

[31]. This can be obtained directly from a dimensional argument if δ depends only

on ε and time. Note the units of ε are m2/s3. If one then extends this model

to a correction-factor expression, similar to (6.5), with an appropriately chosen

correction, one might obtain behavior that would be difficult to distinguish from

fluctuating power laws, though with a rather different interpretation.

6.10 Conclusion

In conclusion, we have observed and characterized the dynamics of individual

reconnection events in superfluid 4He. Although we observe significant deviations

that vary from event to event from the mean behavior, the typical dynamics are close

to those predicted by dimensional arguments. We regard this as our major finding.

The deviations may be accounted for in two separate ways: (a) by supposing the

scaling exponent of the dynamics can fluctuate as in (6.2), or (b) by recognizing

that the predicted power laws must be supplemented by a correction factor such as

in (6.5). The two three-parameter expressions describe the data almost equally well

from a χ2 perspective, but suggest distinct physical interpretations. Thus, we ob-
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serve that a variable scaling exponent should result from either a lack of importance

of the precise value of the quantum of circulation κ or from the competing relevance

of another physical quantity of distinct dimensions (such as a length-scale, surface

tension, etc.).

On the other hand and more naturally, we interpret the correction factor as

arising from initial conditions and boundary effects, such as the vorticity distribution

and intervortex spacing, and from properties of the local environment at reconnec-

tion, such as velocity gradients, pressure gradients, and thermal fluctuations. Since

the dynamics appear to be well characterized by the predictions that assume that

the only relevant physical parameter is the quantum of circulation κ, we believe

our data indicate that the environment, as opposed to other parameters, is most

likely the origin of the observed deviations. Further investigations experimentally

and theoretically could focus on: (i) considering alternate forms of the correction

term, such as cθ|t − t0|θ with θ �= 1, and (ii) systematically changing the initial

and boundary conditions as well as the local environment near reconnection and

investigating the resulting deviations from the dimensionally predicted asymptotic

form.
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Chapter 7

Quantum Turbulence

A great deal of information regarding turbulent states in He II has been gleaned

from experimental studies despite the inability to directly probe the local velocity

field. Many recent investigations have been concerned with similarities between

quantum turbulence and classical turbulence, which we briefly review below. These

experiments all study the characteristics of the flow on length scales greater than

the typical intervortex spacing. In this chapter, we characterize the dynamics of

turbulent He II on length scales smaller than the typical intervortex spacing by

directly measuring the local velocity field.† We predict and measure the distributions

of velocities in turbulent He II and compare them to those typical of classical fluid

turbulence.

7.1 Similarities with Classical Turbulence

Many recent studies have focussed on the behavior of quantum turbulence

on length scales sufficiently large that the interactions of individual quantized vor-

tices may be neglected. These previous works concluded that on such length scales

quantum turbulence shares many characteristics with classical turbulence [18, 23–

29, 40, 49, 131–138]. Even though the quality of the supporting evidence has been

†The details of this chapter follow closely the discussion presented by Paoletti et al. in [4].
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questioned [139], it will be summarized here.

Experiments on turbulence generated in 4He by two counter-rotating disks

observed Kolmogorov energy spectra that were indistinguishable above and below

the superfluid transition [26]. The spectra were determined by measuring pressure

fluctuations using a probe ∼ 1 mm in size, which is larger than the typical inter-

vortex spacing l. A similar Kolmogorov energy spectrum was also seen in numerical

simulations of the Gross-Pitaevskii equation with small-scale dissipation added to

the otherwise energy-conserving dynamics [18]. However, it is unclear if such an

equation is applicable to turbulence in He II — the chosen form for the dissipation

was designed to resemble a classical fluid.

The classical decay of vorticity [23] has been observed in towed grid [23, 27],

thermal counterflow [29], and impulsive spin down [30] experiments. In all of these

studies the decay of the vortex line length density L was measured and used to

make an analogy with the energy dissipation rate in a classical fluid. The quantity

L is globally averaged and cannot be used to probe the local dynamics. As we

pointed out in Subsection 1.4.1, it is possible to have L > 0 without dissipation, for

example in a rotating container. Therefore, several caveats must be added in order

to compare the decay rate of L to the energy dissipation rate.

In this chapter, we study the velocity statistics of quantum turbulence gener-

ated by a thermal counterflow on length scales between our experimental resolution

(∼ 1 μm) and the typical intervortex spacing (∼ 0.1 − 1 mm). On such length

scales the interactions of individual quantized vortices are important. Specifically,

quantized vortex reconnection [3, 4, 6, 53, 57, 58, 93], where two vortices merge at
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a point, change topology by exchanging parts, and separate (Fig. 2.11), produces

high, atypical velocities. By analyzing the trajectories of micron-sized solid hydro-

gen tracers, we may compute both the velocity statistics of quantum turbulence,

and identify and assess the effects of individual reconnection events.

7.2 Pulsed Counterflow Experiments

We study the velocity statistics in decaying quantum turbulence initiated by a

reproducible thermal counterflow, as discussed in Subsection 6.1. A fixed heat flux

in the range 0.058 W/cm2 < q < 0.17 W/cm2 drives the system for approximately

5 s, after which it is allowed to relax for approximately 10 s before repeating the

process (see Fig. 6.1). The experimental parameters are the same as those presented

in Fig. 6.2. We use this technique since it is reproducible and it has also been used

in Refs. [29, 110, 111], which observed similarities to classical fluid turbulence by

measuring L. Except for Fig. 7.1, all of the data presented in this chapter is acquired

while the heater is off.

7.3 Time-Varying Velocity Distributions

Time-varying distributions of the horizontal and vertical velocity components,

vx and vz, computed by forward differences, are shown in Fig. 7.1 for a typical

thermal pulse. The vx distributions are always peaked near zero. However, as

predicted by the two-fluid model, the vz distributions exhibit different behavior for

t < toff as compared to t > toff . The bimodal vz distributions when the heater is
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Figure 7.1: Time-varying pulsed counterflow velocity distributions at
T = 1.90 K showing (a) vx and (b) vz for a portion of a heat pulse
of 0.17 W/cm2 with the heater turned off at t = toff . White denotes
amplitudes with zero probability.
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on represent particles with vz > 0 moving upward with the normal fluid owing to

Stokes drag while particles with vz < 0 are trapped in the vortex tangle that moves

downward. Once the heat pulse ends, the vertical velocities collapse to distributions

peaked near zero. Although the distributions for both vx and vz are peaked near

zero when the heater is off, many high velocity events remain; these we attribute to

the quantized vortices as explained below.

7.4 Predictable Power-Law Tails

The assumptions used to argue for the classical nature of quantum turbulence

break down on length scales smaller than the typical intervortex spacing, which is

what we have probed with our measurements. It is clear from the online movies (see

[4]) that our turbulent states in superfluid 4He differ drastically from those observed

in classical fluids as a result of the topological interactions of the quantized vortices.

Specifically, reconnection produces anomalously large velocities in highly-localized

areas, which are not diffusively smoothed by viscosity. If length-scales are evolving

asymptotically as R(t) = Ã|κ(t− t0)|1/2, as discussed in Chapter 6, then we expect

the velocities to scale as

v(t) =
Ã

2

√
κ

|t− t0| , (7.1)

which far exceed typical fluid velocities when t→ t0. Note, however, that we expect

such velocities to be cut-off by the speed of first sound (and may anticipate related

differences in the spectrum of pressure fluctuations [140]).

To model the probability distribution function (pdf) of the velocity derived
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from particle trajectories, we may use the transformation

Prv(v)dv = Prt[t(v)]dt, (7.2)

Prv(v) = Prt[t(v)]|dt/dv|, (7.3)

where Prv(v)dv is the probability of observing a velocity between v and v + dv at

any time while Prt(t)dt is the uniform probability of taking a measurement at a

time between t and t + dt. Hence, accepting the scaling relation (7.1), we predict

for large v (small t) the behavior

Prv(v) ∝ |dt/dv | ∝ |v |−3. (7.4)

In fact, as pointed out by Min et al. [141], the velocity distribution around

a straight, singular vortex has the same power-law tails. The velocity field around

such a vortex located along the z-axis is given by

v =
Γ

2πs
φ̂, (7.5)

where Γ is the circulation. To model the pdf of this velocity field we may use the

following

Prv(v)dv = Prs[s(v)]ds, (7.6)

Prv(v) = Prs[s(v)]|ds/dv|, (7.7)

where Prv(v)dv is again the probability of observing a velocity between v and v+dv

at any radius while Prs(s)ds is the probability of taking a measurement at a radius

between s and s+ds. The probability of taking a measurement at a radius between
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s and s + ds is proportional to s, or equivalently v−1. Assuming the velocity field

given by Eq. (7.5), the ratio |ds/dv| is proportional to v−2. Thus we again arrive at

Prv(v) ∝ |dt/dv | ∝ |v |−3. (7.8)

7.5 Velocity Statistics

The vx and vz pdfs derived from all particle trajectories for t > toff for the

same pulse in Fig. 7.1 are shown in Fig. 7.2. The solid lines are fits to Eq. (7.4)

allowing for a mean flow. Indeed, the simple arguments used to derive Eq. (7.4)

are able to predict the tails of the velocity distributions in reconnection-dominated

quantum turbulence. It is quite remarkable that we are able to observe velocities

that are an order of magnitude larger than the standard deviation. Furthermore,

the tails of these distributions are truncated by particle tracking constraints; data

obtained at higher frame rates than those used here (60, 80, 100 fps) could observe

further extended tails.

To emphasize the distinction with classical turbulence, a velocity pdf from an

oscillating-grid experiment in water [142] is shown in blue in Fig. 7.2. Evidently the

velocity pdfs in superfluid helium differ drastically from the near-Gaussian velocity

pdfs observed experimentally [143], and in direct numerical simulations of homoge-

nous and isotropic classical turbulence [119, 144]. We attribute this distinction to

the topological interactions of the quantized vortices, which do not exist in classical

turbulence where the velocity field is diffusively smoothed by viscosity. One must

note, however, that tracer particles in superfluid helium respond separately to the
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Figure 7.2: Local velocity statistics derived from the data in Fig. 7.1
for all particle trajectories with t > toff (computed from over 1.1 × 106

values of velocity). All distributions are scaled to give unit variance using
σvx = 0.066 or σvz = 0.074 cm/s. The probability distribution functions
of vx and vz are shown by black circles and red squares, respectively.
The solid lines are fits to Prv(vi) = a|vi − vi|−3, where i is either x
(black) or z (red) and vi is the mean value of vi. For comparison the
dashed (blue) line shows the distribution for classical turbulence in water
[142] computed from over 107 velocity values. The distribution is scaled
using σv = 0.25 cm/s, and with a peak value matched to the vx data.
The velocity statistics in water are close-to-Gaussian over five decades
in probability.
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normal fluid and the quantized vortices (which are influenced by the normal fluid

and superfluid); this is fundamentally different from that in water.

7.6 Analogies with MHD

Previous studies have argued that the interactions of magnetic field lines can

cause the velocity statistics of magnetohydrodynamic (MHD) turbulence also to dif-

fer from classical turbulence, particularly in astrophysical plasmas with extremely

small resistivities. In such environments magnetic field lines become “frozen” into

the underlying velocity field. If two field lines are driven sufficiently close together

they may also reconnect by diffusive processes. The power-law tails in the distri-

butions of electron energies observed in astrophysical settings (Fig. 3 in [79] and

Fig. 2 in [10]) have been attributed to magnetic reconnection [81, 82]. Furthermore,

theories for MHD turbulence propose that fractional diffusion may be the domi-

nant transport mechanism [145]. Such diffusion is associated with power-law tails

in velocity distribution functions.

By the same arguments made in Section 7.4, the tails of the pdf for the kinetic

energy per unit mass E = (v2x+v
2
z)/2 will be dominated by reconnections. Accepting

the relation (7.1), we have E(t) ∝ |t− t0|−1 and so for large E we expect

PrE (E ) ∝ |dt/dE | ∝ E−2. (7.9)

The pdf of E computed from the data in Fig. 7.2 (which includes all particle trajec-

tories) is shown in Fig. 7.3(a). A single-parameter fit of the form PrE(E) = aE−2

is shown as a solid, red line for comparison. The departure from the predicted
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Figure 7.3: Local energy statistics derived from the data in Fig. 7.1 for
all particle trajectories with t > toff (computed from over 1.1×106 values
of velocity) compared to those of electrons (presumably) accelerated by
magnetic reconnection in the diffusion region of the earth’s magnetotail.
(a) The distribution of the kinetic energy per unit mass E = (v2x+ v

2
z)/2

in He II with a fit of the form PrE(E) = aE−2 shown in red. The
distribution is scaled to give unit variance using σE = 0.017 (cm/s)2.
(b) Electron energy distribution observed by Øieroset et al. [79].
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power-law behavior for low energies may reasonably be attributed to effects from

the boundaries and nearby vortices as well as to the background drift of the normal

fluid. We compare this distribution to the electron energy distribution observed by

Øieroset et al. [79] shown in Fig. 7.3(b).

It is clear that the two distributions in Fig. 7.3 bear resemblance, however

several important distinctions must be made. The distribution computed from our

data is the kinetic energy per unit mass of the He II, with the tails dominated

by the motions of the quantized vortices themselves. In the MHD case taken from

Ref. [79], the distributions are computed from electrons that are accelerated by the

magnetic field lines, rather than of the magnetic field lines themselves. The mecha-

nism by which electrons are accelerated in regions near magnetic reconnection is a

process unto itself and is still actively studied [81, 82]. Furthermore, reconnection

in astrophysical plasmas is a much more complicated process. In He II reconnec-

tion occurs between identical, topologically-constrained quantized vortices whereas

magnetic field lines do not share the same constraints. Nevertheless, taking the

reductionist approach, studying reconnection-dominated quantum turbulence could

aid in the study of MHD turbulence in low resistivity environments.

7.7 Conclusions

In conclusion we have shown that the velocity statistics of quantum turbulence

in superfluid 4He differ drastically from those for classical turbulence owing to the

topological interactions of vortices that are different from those in classical fluids.
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Instead, it appears that turbulence in He II may bear stronger analogy to other

systems characterized by interacting topological defects. Since reconnection is a

principal dissipative mechanism in superfluids near absolute zero, superfluid exper-

iments might provide another “laboratory” for studying strong MHD turbulence,

as well as other systems exhibiting one-dimensional topological defects [71] such

as liquid crystals, superconductors, Bose-Einstein condensates, and cosmic strings.

Furthermore, the normal fluid present in these experiments is relatively quiescent

and additional future directions could include examining the velocity statistics for

the case where both the normal fluid and superfluid are turbulent, since the two

fluids couple through friction acting on the quantized vortices [19–21].
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Chapter 8

Conclusions and Future Work

In this chapter we summarize the conclusions that may be drawn from our

work and provide potential future directions of inquiry. The suggestions for fu-

ture work include additional experiments that can readily be conducted with the

existing apparatus, potential improvements to the injection technique and related

computational studies.

8.1 Summary

In this thesis, we have presented experimental characterizations of turbulent

processes in He II by implementing a newly developed visualization technique [1].

This technique uses micron-sized solid hydrogen particles as tracers, which are capa-

ble of revealing motions of the normal fluid component and of the quantized vortices.

To our knowledge, the ability to observe the dynamics of quantized vortices in the

bulk of He II remains unique. By implementing this technique we have been able

to supplement the vast body of work concerning He II by providing the first ob-

servations of the two-fluid motions in thermal counterflows [5], quantized vortex

reconnection [3, 6], and quantum turbulence [4].

We began by characterizing properties of the motion of tracer particles in

He II [5], which are complicated by interactions with the quantized vortices. We
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have observed a clear transition between regimes where the the particles are only

scattered by the vortices as opposed to being trapped near Tλ. We attribute this

transition to a crossover in the magnitude of the trapping force relative to Stokes

drag that acts to dislodge particles from counterflowing vortices. We argue that for

all temperatures there is a counterflowing velocity above which particles will become

dislodged from the vortices. There have been several notable studies of the motion

of tracer particles in turbulent He II [44–48]. Since we know the density of our tracer

particles, their typical size and the characteristics of the flow it should be possible

to make quantitative comparisons between our observations and these models.

Hydrogen tracer particles were used to characterize the two-fluid motions in

a thermal counterflow [5]. These studies provided the first direct observation of the

two-fluid motions in He II and a quantitative verification of the normal fluid velocity

vn dependence on the driving heat flux q given by

vn =
q

ρST
. (8.1)

The response of the tracer particles is shown to depend upon both the temperature

and the heat flux. For constant heat flux, the fraction of particles that become

trapped on quantized vortices increases with decreasing temperature owing we pre-

sume to the increase in the trapping potential. At constant temperature, the fraction

of trapped particles increases with increasing heat flux as the vortex line length den-

sity also increases. Above a threshold heat flux for a given temperature, though,

Stokes drag will dominate and prevent particles from becoming trapped on vortices.

The dynamics of the quantized vortices in counterflow turbulence are more
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complicated than those of the normal fluid. We observed that the quantized vortices

typically have velocities less than the superfluid velocity vs. This is to be expected,

since the quantized vortices exchange momentum with the normal fluid [19–21].

However, the specific values of the vertical component of the vortex line velocity vL

cannot yet be explained. In order to do so, the geometry of the vortices must be

known; preliminary results from computational studies have recently been reported

showing initial agreement with our measurements [55, 56].

We also report detailed characterization of approximately 20,000 individual

reconnection events [6], which had never before been visualized in He II. To the

author’s knowledge, this is by far the largest collection of observed reconnection

events in any physical system. The dynamics strongly fluctuate from event to event,

although mean quantities correspond to those predicted by simple dimensional ar-

guments. The observed deviations from the predicted scaling are accounted for in

two different ways: (a) by allowing the scaling exponent of the dynamics to fluctuate

or (b) by supplementing the predicted scaling with a correction-factor to account

for variations in the local environment and to allow for a crossover in scales. These

two expressions fit the data equally well, but result in quite distinct physical inter-

pretations. We claim that a variable scaling exponent implies that the precise value

of the quantum of circulation κ is negligible or that other physical parameters of

distinct dimensions are also relevant (such as a length-scale, surface tension, etc.).

The correction-factor is interpreted as arising from variations in the boundary and

initial conditions as well as the local environment. We find the correction-factor

expression is a more natural explanation of the dynamics. The statistics of the fit
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parameters that describe the reconnection dynamics immediately before and after

the event are found to be essentially indistinguishable, even though individual events

are not necessarily symmetric under time-reversal.

Lastly, we have characterized the local velocity field of turbulent states in He II

for the first time [4]. Turbulence was only manifested in the superfluid component;

the normal fluid component was quiescent. We argued that the interactions between

quantized vortices, such as quantized vortex reconnection, would dominate the tails

of the velocity distribution. Assuming such, we predicted that the tails of the pdf

of velocity should decay as v−3. These predictions were confirmed by our mea-

surements of the velocity statistics, which is in stark contrast to the near-Gaussian

velocity statistics always observed in classical homogeneous, isotropic turbulence.

We argue that a stronger analogy may exist between turbulence in He II and MHD

turbulence in astrophysical plasmas where the reconnection of magnetic field lines

is an important process.

8.2 Ring Collapse - Dynamics and Effects on Velocity Statistics

The dynamics of quantized vortex rings plays an important role in quantum

turbulence. As initially envisioned by Feynman in 1955, and depicted in Fig. 2.12,

reconnection can lead to the formation of vortex rings. These rings will propagate

because of their self-induced velocity and at temperatures above 1 K are seen to

decay. For lower temperatures, these rings may dissipate vortex line length by

interacting with the boundaries or by forming successively smaller rings.
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We have made preliminary observations of the dynamics and collapse of vortex

rings that agree quite well with theoretical predictions [146]. It is clear that many

such ring collapse events occur in our decaying counterflow turbulence experiments.

Each of these events removes quantized vortex line length from the system, thereby

aiding the relaxation toward equilibrium. A systematic characterization of many of

these events could shed light on this relaxation process and the role of ring collapse

in quantum turbulence.

The self-induced velocity of quantized vortex rings increases with decreasing

radius. Since the circulation of the vortex ring is topologically constrained, ring

collapse produces very large velocities in a manner very similar to reconnection.

The quantum of circulation governs the dynamics in both cases, and therefore we

expect that arguments made in Section 7.4 may also apply to ring collapse. Thus,

fully understanding the tails of the velocity distributions also requires knowledge of

the dynamics and the role of ring collapse events in addition to reconnection.

8.3 Narrow Channel Counterflows

The counterflow channel used in the experiments presented in this thesis is a

4.45 cm diameter cylinder. The entire fluid in the test section is heated in this case,

which makes temperature control difficult. This particular setup was used to aid

the visualization technique, although we think that improvements could be made

by using a narrower channel as detailed in the following subsections.
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Figure 8.1: Drawings of the square heater designed and built for use in
narrower counterflow channel experiments. Nichrome wire (22 AWG) is
laid in a serpentine pattern in the grooves of the heater plate and held in
place using stycast. The positions of the heater plate and the top plate
(copper) are shown in Fig. 8.2. The bottom annulus, made of stainless
steel, rests in the bottom of the test section and threaded rods are used
to set the height of the heater relative to the viewing windows.
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8.3.1 Extended Range of Heat Fluxes

In other experimental systems, much narrower channels (10−2 cm) are typ-

ically used for studying thermal counterflows. In fact, prior to our experiments

0.1 cm tubes, which are 50× narrower than ours, were considered “wide channels.”

Such channels were chosen for multiple reasons. First, the heat flux is inversely

proportional to the channel area. Thus, for the same electrical power higher heat

fluxes are achievable in channels with smallers areas. Secondly, temperature control

is vastly improved in these small channels by immersing them in a He II bath. Be-

tween driving the system with less electrical power and only heating a fraction of

the He II volume, better control over the experimental conditions is achieved.

For our visualization experiments, though, we must also consider the optical

constraints. The present optics available to us place a lower bound on the size of

the counterflow channel. We have designed and constructed a smaller counterflow

channel, which is shown in Figs. 8.1 and 8.2. This channel has an area of 4 cm2, as

opposed to 15.52 cm2 for the one shown in Fig. 3.4(a). Furthermore, the counterflow

channel is only 7.3 cm tall yielding a total volume of 29.2 cm3, which is only ∼ 10%

of the fluid volume surrounding the channel.

Given the smaller area and the surrounding He II, this channel should be able

to span a larger range of heat fluxes as well as obtain better temperature control.

The lowest heat flux for the experiments in Chapter 5 is set by competition with

spurious counterflows from the windows of the test section. This channel, though,

is surrounded by isothermal He II, which should yield a much calmer environment.
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Figure 8.2: Glass cell designed and built to serve as a narrower counter-
flow channel. The microscope slides form the boundaries of the counter-
flow channel, which is open to the surrounding He II at the top. They
are placed into grooves in the heater plate (see Fig. 8.1) and held in
place with either stycast or vacuum grease. Threaded rods are used in
conjunction with the bottom annulus shown in Fig. 8.1 to place the mid-
height of the counterflow channel at the center of the viewing windows
of the cryostat.
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The highest heat flux for the work presented here is set by the maximum cooling

rate of the pumping system. By reducing the heated fluid volume and the area

of the channel, much higher heat fluxes should be attainable. In fact, preliminary

experiments have shown improvements in reducing spurious counterflows as well as

temperature control.

With this new experimental apparatus, several important areas of investigation

are now possible. The discrepancy between the data shown in Fig. 5.5 and the results

presented by Zhang and van Sciver [98] remains unresolved. The range of heat fluxes

between the two experiments is adjacent but not overlapping, with all of our heat

fluxes lower than those in Ref. [98]. The maximum heat flux achievable with the new

counterflow channel should be well within the range of those examined by Zhang et

al. [98], which will allow for direct comparison for the first time.

8.3.2 Poiseuille Flow

Additional experiments using thinner counterflow channels could investigate

the boundary conditions for the normal fluid. It is always assumed that the normal

fluid has no-slip boundary conditions, even though it has not been directly verified.

By observing an entire cross-section of the flow inside a narrow channel, one could

verify or refute this assumption.

As a result of the assumed boundary conditions, it is also often supposed that

the normal fluid has a Poiseuille flow profile in thermal counterflows. Poiseuille flow
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characterizes the parabolic velocity profile of laminar pipe flow and is given by [147]

v = − 1

μ

dP

dz
(R2 − r2)ẑ, (8.2)

where μ is the dynamic fluid viscosity, dP/dz is the uniform pressure gradient that

drives the flow, R is the radius of the pipe, r is the distance from the center of the

pipe, and ẑ is the direction of flow along the pipe’s axis. We have not been able

to verify or refute this assumption for a few reasons. Firstly, we only observe the

center ∼25% of the flow, which makes it difficult to precisely determine the flow

profile. Secondly, the Poiseuille flow profile does not fully develop until the fluid

has traversed ∼ 40 pipe diameters beyond the entrance of the pipe [147]. In our

experiments, we observe the flow within only two pipe diameters from the heater,

which serves as the pipe entrance. Thus, a much narrower and longer counterflow

channel will be necessary in order to test if the Poiseuille flow profile is established

many pipe diameters away from the heater.

8.3.3 Turbulent Normal Fluid

The steady-state vortex line length density L0 in thermal counterflows is typ-

ically given by

L0 = γ(T )|vns|2, (8.3)

where γ(T ) depends upon temperature and the geometry of the counterflow channel

and vns = vn −vs. It is known that for vns > vc2, the system undergoes a transition

to a state with much higher values of L [148]. This transition has been referred to

as the TI – TII transition. Recent theoretical work associates this transition with
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an instability in the flow of the normal fluid component [149]. The flow of a classical

fluid in a pipe is always linearly stable. The instability in He II is associated with

the interactions between the normal fluid and the superfluid vortices, rather than a

hydrodynamic instability of a single fluid.

We do not directly measure L in the thermal counterflow studies presented in

Chapter 5. However, comparing the geometry and velocities of our experiments to

theoretical predictions and experimental characterizations of the TI – TII transition,

we can conclude that all of our data has been obtained in the TII state. From

the trajectories of particles tracing the normal fluid (black curves in Fig. 5.2), the

normal fluid does not resemble the “swirling motions” we so often associate with

turbulence. Specifically, the upward-moving trajectories do not deviate in the x-

direction as evidenced by the sharp peak in the distributions of the trajectory angle

θ at π/2 as shown in Fig. 5.4(b). Lastly, as described in Subsection 1.3.1, inertial

effects are extremely important in turbulent classical fluids. However, once the

heater is turned off the motions in the normal fluid cease, as shown in the time-

varying distributions of the velocity components in Fig. 7.1. The only evidence that

we presently have for potential turbulence in the normal fluid is that the observed

normal fluid velocities vno vary in time and from particle to particle, as exemplified

by the standard deviations plotted in Fig. 5.5(a). To directly test these predictions,

TI flow states must also be directly visualized and compared to TII states. Observing

TI flow states requires using a smaller channel as well as lower heat fluxes, both of

which should be possible with the channel shown in Fig. 8.2.
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8.4 Rotating Superfluids

Strong initial evidence that hydrogen tracer particles may be used to visualize

quantized vortices was provided by studying He II under uniform rotation. As

discussed in Subsection 1.3.2, Feynman made a specific prediction for the number

density of quantized vortices for a superfluid rotating at a uniform rate of Ω. This

prediction stems from the following arguments. A fluid uniformly rotating at Ω has

vorticity 2Ω s−1. A cross-section of a superfluid with n vortex lines per cm2 produces

a vorticity ω = nκ s−1, where κ = 9.97× 10−4 cm2/s is the quantum of circulation.

Thus, equating these two, Feynman predicted that one should observe n = 2Ω/κ

quantized vortex lines per cm2.

Qualitative agreement with this prediction using hydrogen tracers was pro-

vided in Ref. [1]. The agreement was only qualitative because the array of vortices

was viewed from an xz-plane. This introduces systematic effects and greatly limits

the resolution of the measurement. The desired vantage point is a xy-plane, as shown

from other experimental systems in Fig. 1.3. The previous cryostat used in Ref. [1]

was incapable of providing such a view. However, the Oxford cryostat used for the

studies presented here is capable of viewing a xy-plane of the system. As such, the

author constructed all of the necessary apparatus to rotate the cryostat without

losing the abilities to measure and control the temperature, inject the hydrogen-

helium mixture, and acquire images of the dynamics. Preliminary experiments have

already taken place and are discussed briefly in the subsections below.
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8.4.1 Lattice Formation

The details of the formation and destruction of regular lattices of quantized

vortices, to our knowledge, has not been explored. In particular, if we begin with a

state describing stationary He I, that is (Ω = 0, T > Tλ), then we may arrive at the

final state of a rotating superfluid (Ω > 0, T < Tλ) by two different paths shown in

the following commutation diagram:

(Ω = 0, T > Tλ)
rotate−−−−−−−→ (Ω > 0, T > Tλ)⏐⏐�cool

⏐⏐�cool

(Ω = 0, T < Tλ)
rotate−−−−−−−→ (Ω > 0, T < Tλ)

That is, we can either transition to the superfluid state then rotate the system or

we can bring the system to solid-body rotation then pass through the λ-transition.

If equilibrium is attained the final state is insensitive to the path taken; however

the dynamics of the formation of the lattice could be quite different between these

scenarios.

We have performed preliminary studies of the lattice formation in He II. A

typical image from one of our movies is shown in Fig. 8.3 along with a blown up

patch showing the locations of neighboring vortices. Clearly the lattice structure is

not as evident as the cases displayed in Fig. 1.3. There are at least two reasons for

this. Firstly, spurious counterflows from the windows drive flows that will disturb

any lattice structure. These can be minimized by isolating a portion of the fluid

in a cell immersed in a He II bath, as suggested for the counterflow studies as well
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Figure 8.3: Images from preliminary experiments of uniformly rotating
He II with Ω = Ωẑ. (a) The full field of view (8 mm × 8 mm) showing
an xy cross-section of the fluid. (b) A magnified view of a portion of
the fluid with green dots denoting particle centers that we interpret as
marking the positions of quantized vortices. The lattice structure is not
as clearly evidenced as the previous experimental images shown in Fig.
1.3. The lattice structure is distorted by wave motions and inadequate
control of the experimental conditions.
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in Subsection 8.3.1. Secondly, the lattice is able to support wave modes, which are

clearly evident in the movies. These waves offer an independent future direction of

inquiry as detailed in the next subsection.

8.4.2 Tkachenko Waves and Rotating Counterflows

Lattices of quantized vortices are capable of sustaining wave modes, often

referred to as Tkachenko waves [150]. These waves are transverse oscillations of the

quantized vortices and are restored by the vortex line tension and elasticity of the

lattice itself. Our experiments and particle-tracking algorithm provide an excellent

means of testing calculations pertaining to Tkachenko oscillations.

In addition to lattice oscillations, applying a counterflow along the axis of rota-

tion is also an active area of study in He II. Rotation tends to align quantized vortices

with the axis of rotation whereas mutual friction and counterflowing motions tend

to stretch them in orthogonal directions. This competition can be systematically

studied by varying the relative ratio of the rotational forcing and the counterflow

forcing. We expect that this type of flow will yield very interesting dynamics and

steady-states. Furthermore, results from this type of system may be relevant to oth-

ers that are characterized by a competition between organizing and disorganizing

effects — the first example to come to mind would be magnetic field lines in a star

that are organized by rotational effects and disorganized from convection and other

forms of turbulence.
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8.4.3 Taylor-Couette Flow

The flow between independently rotating cylinders is referred to as Taylor-

Couette flow. This system has been studied extensively in classical turbulence be-

cause many rich phenomena may be studied within a single apparatus. The rotating

cryostat could be modified to contain an independently rotating inner cylinder, al-

lowing for Taylor-Couette flow studies in both He I and He II within the same

apparatus. Since the similarities and distinctions between classical turbulence and

quantum turbulence is such an active area of study, performing identical experiments

and measurements within the same apparatus using both classical and quantum flu-

ids could provide valuable information to this field of study.

8.5 Injection Improvements

The injection technique discussed in Gregory Bewley’s thesis [1] has served

the studies contained in his thesis as well as this one quite well. In fact, the number

of new discoveries that have been made using this technique in only a few years is

quite remarkable. However, there are a few aspects of the technique that we feel

might be able to be improved.

8.5.1 Pre-cooled Mixtures

Presently a room temperature mixture of hydrogen and helium is injected

directly into the bulk of the liquid helium immediately above Tλ. This room tem-

perature gas introduces a significant amount of heat input into the system. Indeed,
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for sufficiently long injections one is able to directly observe the increase in temper-

ature of the entire fluid in the test section.

We have observed that using the very same technique immediately below Tλ

does not yield satisfactory results. Rather than obtaining a “mist” of sub-micron

particles, the hydrogen tends to be orders of magnitude larger and clumped into

localized areas of the fluid. One potential explanation for this is that the heat that is

injected with the mixture causes a vigorous, localized counterflow. This counterflow

produces many quantized vortices inside and very near the injector tube that cause

the particles to clump as they form.

Independent of whether or not the heat input precludes injection directly into

the He II state, reducing the amount of heat into the system is desirable. This

may be achieved by a few different means. Firstly, the injection lines can be passed

through a vessel filled with liquid nitrogen (77 K), which could remove a significant

fraction of the heat. Or, the mixture could be allowed to pass into a temperature-

controlled vessel within the cryostat itself. This vessel would be positioned above

the free surface of the liquid helium and would be cooled by the evaporated helium

gas as it passes into the pumping lines. The mixture would be held at a temperature

above the boiling point of hydrogen (20 K at atmospheric pressure) with an internal

heater. Then a solenoid valve between the containment vessel and the injection tube

(all inside of the test section) could be opened to allow the pre-cooled mixture to be

injected into the liquid helium. A similar technique has already been implemented

by the group of van Sciver.
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8.5.2 Injection Below Transition

The greatest restriction on the efficiency of conducting the experiments is the

necessity to inject the hydrogen mixture above Tλ. The typical procedure is to

inject, slowly cool the system for approximately 20–50 minutes, take measurements

for a few minutes, then allow the system to heat back up above Tλ over a span of

tens of minutes again. This process greatly consumes time as well as liquid helium,

which eventually evaporates by the end of the work day.

If one were able to directly inject into the He II state then the efficiency of

the experiments would be drastically improved. As we discussed in the previous

subsection, pre-cooling the hydrogen mixture could provide a means of injecting

directly into the He II state. Other groups have also removed the injector tube from

the bulk of the liquid such that the injected gas impinges on the free surface of the

liquid. Another possibility would be to allow the hydrogen to very slowly “leak”

into the cryostat by greatly restricting the flow rate through the injection line. We

have unintentionally observed that residual hydrogen gas from the day before is

capable of producing excellent tracer particles below Tλ. Lastly, we have also had

some success injecting into the helium reservoir then transferring the He I in the

reservoir into a much cooler test section partially filled with He II.

One other distinction between the He I and He II states may explain the

difference in the quality of the tracer particles. The He I state is characterized by

very strong, vigorous mixing produced by convection from (unavoidable) heat leaks

into the test section through the vacuum insulation. Once the system transitions into
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the He II state, the effective thermal conductivity grows by a factor of 107, resulting

in a much calmer state in He II. When we inject in He I, therefore, the hydrogen

particles are very rapidly mixed throughout the entire fluid volume. In the He II

state, on the other hand, we observe that the hydrogen is always concentrated in

localized patches of the fluid. Therefore, we propose that intentionally driving flows

in the He II state as one injects such that the hydrogen properly mixes throughout

the system may yield more desirable results.

8.6 Computational Studies

In addition to the experimental studies suggested above, we believe there are

several potentially interesting computational studies related to this work. Many

numerical simulations of counterflow turbulence [50–56] and decaying counterflow

turbulence [110, 111] have been performed. However, almost all of these studies fo-

cus on the vortex line length density L because it is the most common experimental

measurement. We are not aware of any computational studies that have looked at

the velocity field in great detail, even though it is readily available in such simula-

tions. Now that we have an experimental means of determining the velocity field

one could make direct comparisons with the velocity statistics, for example, in nu-

merical simulations of counterflow turbulence and decaying counterflow turbulence.

Preliminary results have already been obtained by Tsubota and coworkers [55] com-

paring our measured values of the vortex line velocities vL to those in numerical

simulations.
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We have also observed an anisotropy in reconnection events in our decaying

counterflow turbulence experiments (see Section 6.8). Even though the implemen-

tation is ad hoc, numerical simulations of decaying counterflow turbulence involve

many reconnection events. The statistics of the displacements vectors in these com-

putations could be directly compared to the data shown in Figs. 6.16 and 6.17. This

is a potentially useful benchmark for numerical simulations that assume the local-

ized induction approximation (LIA). Adachi et al. [56] recently pointed out a clear

discrepancy in the reconnection process and the resulting anisotropy between simu-

lations that assume the LIA as compared to those that compute the full Biot-Savart

integral.

Lastly, we argue that the observed fluctuations in the reconnection dynamics

are caused by the local environment and initial and boundary conditions. Numerical

computations using either line-vortex models or the Gross-Pitaevskii equation could

systematically change these conditions to see if our hypothesis is true. The previous

work of de Waele and Aarts [57] only computes the dynamics within 3 μs before the

reconnection event whereas we investigate the dynamics up to 0.25 s away from the

event both before and after. We conjecture that the observed effects become more

pronounced away from the moment of reconnection.
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Appendix A

Codes

In this appendix, we provide a few of the analysis codes that have been greatly

used throughout the work presented here. We begin with MatLab codes that are

part of the temperature control algorithm that convert the measured voltage drop

across the thermistor into the temperature. In the final section, examples of the

codes used to find and analyze individual reconnection events are presented.

A.1 Matlab Codes

In this section, we provide the two MatLab codes that are used to convert

the voltage measurements described in Subsection 3.2 and shown in Fig. 3.9 into

temperature. Assuming the recommended resistors and voltages described in Table

3.1 are used, the voltage drop across the thermistor may be directly converted into

the temperature using givetemplo.m for T < 4.5 K. For T > 4.5 K, givetemphi.m

must be used in conjunction with 0.450 V amplitude on the SR830 lock-in amplifier

as opposed to 0.150 V appropriate for lower temperatures.
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Figure A.1: Givetemplo.c code used to convert the voltage measurements
of the thermistor into temperature for T < 4.5 K.
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Givetemplo.m (continued)
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Figure A.2: Givetemphi.c code used to convert the voltage measurements
of the thermistor into temperature for T > 4.5 K. For these higher
temperatures, 1 μA of current excitation should be used rather than
0.33 μA appropriate for lower temperatures.
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Givetemphi.m (continued)
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A.2 C codes for data analysis

In this section we present the essential C codes that have been used to analyze

the reconnection events presented in Chapter 6. All of the codes take a trajectory file

formatted as rows of [ track number, frame number, x-position, z-position, radius of

gyration ] as the first input. The codes then determine all possible pairs of particles

that meet the criterion (6.1). For each pair that meet this criterion, the pairwise-

separation δ(t) is fit to either the arbitrary power-law expression given by Eq. (6.2)

or the correction-factor expression given by Eq (6.5) depending upon the particular

C code.

The program used to fit forward events to the correction-factor expression,

pairsubcritexp.c, is shown in Fig. A.3. For each pair of particles that meet the

criterion (6.1), 500 evenly-spaced values of t0 are fit and the set of {A, c, t0} that

minimizes χ2 is output. The values of A and c for each t0 are determined by a

linear-least squares fit to the following equation

δ(t)

(t− t0)
1/2

= m (t− t0) + b. (A.1)

Once the values of m and b are determined, they may be converted into A and c by

A =
b√
κ

(A.2)

c =
m

b
. (A.3)

The corresponding code used to fit reverse events to the correction-factor expression

is pairsubcritexp rev.c. The two programs are identical except that pairsubcrit-

exp rev.c negates all of the times and reverses the order of the trajectory file, which
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allows us to then preserve the rest of the algorithm used for the forward events.

The code used to fit forward events to the arbitrary power-law expression,

pairdeltavecsreal.c, is shown in Fig. A.4. For each pair of particles that meet the

criterion (6.1), 500 evenly-spaced values of α in the interval 0 < α < 2 are fit and the

set of {α, B, t0} that minimizes χ2 is output. The values of B and t0 for each α are

determined by a linear least-squares fit of [δ(t)]1/α. Other than the particular fitting

function, the details of pairdeltavecsreal.c are identical to those in pairsubcritexp.c.

We therefore only thoroughly comment pairsubcritexp.c. The corresponding algo-

rithm for reversed events is pairdeltavecsreal rev.c, which again negates the times

and reverses the order of the trajectory file as in pairsubcritexp rev.c.
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Figure A.3: Pairsubcritexp.c code used to fit the correction-factor ex-
pression to the reconnection events. An example execution is pairsub-
critexp p42 m20 r5.gdf.f.f 20 4 80 > out.dat.
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Pairsubcritexp.c (continued)
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Pairsubcritexp.c (continued)
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Pairsubcritexp.c (continued)
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Pairsubcritexp.c (continued)
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Figure A.4: Pairdeltavecsreal.c code used to perform the arbitrary
power-law fits to the reconnection events. An example execution is paird-
eltavecsreal p42 m20 r5.gdf.f.f 20 4 80 > out.dat.
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Pairdeltavecsreal.c (continued)

192



Pairdeltavecsreal.c (continued)
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Pairdeltavecsreal.c (continued)
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Appendix B

Raw Data and Parameters

In this appendix we include tables of raw data plotted throughout the thesis

as well as parameters important to dynamics in He II.

B.1 Counterflow Experiments

Table B.1: Experimental parameters for the counterflow experiments presented in
Chapter 5 and plotted in Fig. 5.1. The Date and Run denote the source of the
data, T is the temperature shown in the legend of Fig. 5.5, Tmin is the minimum
temperature during the run, Tmax is the maximum temperature during the run, Q
is the heater power and q is the applied heat flux.

Date Run T (K) Tmin (K) Tmax (K) Q (W) q (mW/cm2

041608 8 1.80 1.788 1.799 0.207 13.3
042508 2 1.80 1.794 1.811 0.219 14.1
041708 10 1.80 1.798 1.817 0.235 15.1
042408 4 1.80 1.749 1.778 0.306 19.7
041808 1 1.80 1.767 1.813 0.361 23.3
041508 10 1.80 1.800 1.840 0.489 31.5
041608 7 1.85 1.826 1.831 0.208 13.4
042408 3 1.85 1.797 1.816 0.306 19.7
041708 5 1.85 1.823 1.845 0.356 22.9
042408 5 1.85 1.802 1.827 0.39 25.1
042308 7 1.85 1.815 1.852 0.536 34.5
041708 6 1.85 1.818 1.856 0.611 39.4
041708 2 1.90 1.887 1.893 0.224 14.4
042408 2 1.90 1.846 1.854 0.311 20.0
041508 2 1.90 1.900 1.930 0.403 26.0
042408 6 1.90 1.852 1.872 0.466 30.0
041808 2 1.90 1.843 1.883 0.599 38.6
042408 8 1.90 1.869 1.911 0.739 47.6
041708 8 1.90 1.876 1.934 0.979 63.1

continued on next page
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continued from previous page

Date Run T (K) Tmin (K) Tmax (K) Q (W) q (mW/cm2

042308 10 1.95 1.918 1.930 0.243 15.7
040408 3 1.95 1.845 1.865 0.366 23.6
042408 1 1.95 1.873 1.895 0.56 36.1
042508 6 1.95 1.957 1.990 0.773 49.8
041708 7 1.95 1.930 1.981 0.979 63.1
041708 1 2.00 1.982 1.985 0.271 17.5
042308 6 2.00 1.975 1.982 0.397 25.6
041508 9 2.00 1.998 2.006 0.486 31.3
042308 4 2.00 1.969 1.993 0.718 46.3
042508 3 2.00 2.005 2.018 0.789 50.8
040908 6 2.00 1.970 2.030 1.089 70.2
042308 1 2.05 2.019 2.024 0.246 15.9
041708 4 2.05 2.023 2.029 0.467 30.1
042408 7 2.05 2.006 2.013 0.6 38.7
042308 2 2.05 2.008 2.015 0.722 46.5
042508 4 2.05 2.061 2.064 0.789 50.8
040408 4 2.05 2.045 2.075 0.905 58.3
041608 5 2.05 2.002 2.042 1.286 82.9
041708 3 2.05 2.009 2.074 1.419 91.4
042308 9 2.10 2.056 2.069 0.243 15.7
041508 6 2.10 2.099 2.103 0.475 30.6
041508 7 2.10 2.088 2.101 0.725 46.7
042508 5 2.10 2.099 2.115 0.784 50.5
042508 7 2.10 2.111 2.131 1.068 68.8
041508 8 2.10 2.096 2.116 1.17 75.4
041608 6 2.10 2.065 2.101 1.351 87.1
041608 3 2.15 2.123 2.136 0.37 23.8
042308 8 2.15 2.119 2.125 0.532 34.3
041608 4 2.15 2.128 2.133 0.612 39.4
042308 5 2.15 2.122 2.127 0.721 46.5
041008 4 2.15 2.150 2.160 0.897 57.8
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Table B.2: Measured normal fluid velocities compared to the theoretically computed
velocities as plotted in Fig. 5.5(a). The temperature given in the legend of Fig. 5.5(a)
is given in the first column, Q is the heater power, q the heat flux, vn is the mean
normal fluid velocity given by Eq. (2.25), σn is the variation in vn caused by the
fluctuation in T over the duration of the run, vno is the measured value of the normal
fluid velocity and σno is the standard deviation of vno.

T (K) Q (W) q (mW/cm2) vn (mm/s) σn (mm/s) vno (mm/s) σno (mm/s)
1.80 0.21 13.34 0.97 0.02 1.05 0.25
1.80 0.22 14.11 0.99 0.03 1.23 0.28
1.80 0.24 15.14 1.04 0.03 1.11 0.20
1.80 0.31 19.72 1.59 0.08 1.53 0.28
1.80 0.36 23.26 1.72 0.14 1.65 0.26
1.80 0.49 31.51 2.08 0.14 1.74 0.36
1.85 0.21 13.40 0.86 0.01 0.95 0.28
1.85 0.31 19.72 1.36 0.04 1.41 0.22
1.85 0.36 22.94 1.44 0.06 1.72 0.27
1.85 0.39 25.13 1.69 0.07 1.74 0.25
1.85 0.54 34.54 2.18 0.14 1.82 0.35
1.85 0.61 39.37 2.46 0.16 2.53 0.28
1.90 0.22 14.43 0.75 0.01 0.73 0.34
1.90 0.31 20.04 1.19 0.02 1.26 0.23
1.90 0.40 25.97 1.24 0.06 0.99 0.33
1.90 0.47 30.03 1.71 0.06 1.37 0.47
1.90 0.60 38.60 2.20 0.15 2.04 0.28
1.90 0.74 47.62 2.48 0.17 2.21 0.41
1.90 0.98 63.09 3.14 0.30 2.95 0.31
1.95 0.24 15.66 0.73 0.01 0.83 0.30
1.95 0.37 23.59 1.38 0.05 1.37 0.44
1.95 0.56 36.09 1.91 0.07 1.87 0.24
1.95 0.77 49.81 1.97 0.11 1.70 0.41
1.95 0.98 63.09 2.66 0.22 2.53 0.30
2.00 0.27 17.46 0.67 0.00 0.85 0.24
2.00 0.40 25.58 1.00 0.01 1.16 0.23
2.00 0.49 31.32 1.12 0.01 0.91 0.24
2.00 0.72 46.27 1.79 0.07 1.88 0.27
2.00 0.79 50.84 1.77 0.04 1.78 0.33
2.00 1.09 70.18 2.56 0.25 2.15 0.50
2.05 0.25 15.85 0.54 0.00 0.60 0.25
2.05 0.47 30.09 1.00 0.01 0.85 0.36
2.05 0.60 38.66 1.36 0.01 1.36 0.24
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continued from previous page

T (K) Q (W) q (mW/cm2) vn (mm/s) σn (mm/s) vno (mm/s) σno (mm/s)
2.05 0.72 46.53 1.62 0.02 1.62 0.42
2.05 0.79 50.84 1.50 0.01 1.65 0.36
2.05 0.91 58.32 1.74 0.08 1.72 0.39
2.05 1.29 82.87 2.79 0.18 2.44 0.50
2.05 1.42 91.44 2.91 0.30 2.65 0.34
2.10 0.24 15.66 0.46 0.01 0.44 0.17
2.10 0.48 30.61 0.80 0.01 0.79 0.27
2.10 0.73 46.72 1.25 0.03 1.20 0.22
2.10 0.78 50.52 1.30 0.04 1.52 0.57
2.10 1.07 68.82 1.68 0.06 2.00 0.84
2.10 1.17 75.40 1.94 0.07 1.84 0.41
2.10 1.35 87.06 2.42 0.14 2.02 0.47
2.15 0.37 23.84 0.56 0.01 0.65 0.20
2.15 0.53 34.28 0.83 0.01 0.81 0.22
2.15 0.61 39.44 0.93 0.01 0.92 0.24
2.15 0.72 46.46 1.12 0.01 1.10 0.32
2.15 0.90 57.80 1.25 0.02 0.99 0.27
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Table B.3: Measured vortex line velocities compared to the theoretically computed
superfluid velocities as plotted in Fig. 5.5(b). The temperature given in the legend
of Fig. 5.5(b) is given in the first column, Q is the heater power, q the heat flux, vs
is the mean superfluid velocity given computed by Eq. (2.26), σs is the variation in
vs caused by the fluctuation in T over the duration of the run, vL is the measured
value of the vortex line velocity and σL is the standard deviation of vL.

T (K) Q (W) q (mW/cm2) Vs (mm/s) σs (mm/s) VL (mm/s) σL (mm/s)
1.80 0.21 13.34 -0.45 0.002 -0.15 0.20
1.80 0.22 14.11 -0.48 0.004 0.01 0.37
1.80 0.24 15.14 -0.52 0.006 -0.08 0.33
1.80 0.31 19.72 -0.65 0.008 -0.23 0.45
1.80 0.36 23.26 -0.78 0.017 -0.25 0.42
1.80 0.49 31.51 -1.09 0.025 -0.26 0.68
1.85 0.21 13.40 -0.47 0.001 -0.17 0.27
1.85 0.31 19.72 -0.67 0.007 -0.24 0.31
1.85 0.36 22.94 -0.81 0.010 -0.30 0.37
1.85 0.39 25.13 -0.87 0.013 -0.19 0.37
1.85 0.54 34.54 -1.22 0.026 -0.67 0.53
1.85 0.61 39.37 -1.39 0.032 -0.68 0.48
1.90 0.22 14.43 -0.55 0.002 -0.20 0.26
1.90 0.31 20.04 -0.72 0.004 -0.38 0.31
1.90 0.40 25.97 -1.04 0.032 -0.49 0.45
1.90 0.47 30.03 -1.10 0.017 -0.68 0.46
1.90 0.60 38.60 -1.42 0.042 -0.61 0.48
1.90 0.74 47.62 -1.83 0.064 -0.64 0.59
1.90 0.98 63.09 -2.49 0.131 -0.80 0.74
1.95 0.24 15.66 -0.64 0.008 -0.21 0.36
1.95 0.37 23.59 -0.85 0.013 -0.57 0.51
1.95 0.56 36.09 -1.37 0.023 -0.73 0.46
1.95 0.77 49.81 -2.31 0.121 -1.28 0.64
1.95 0.98 63.09 -2.80 0.195 -1.26 0.67
2.00 0.27 17.46 -0.83 0.004 -0.47 0.36
2.00 0.40 25.58 -1.20 0.013 -0.65 0.43
2.00 0.49 31.32 -1.59 0.029 -0.76 0.41
2.00 0.72 46.27 -2.19 0.081 -1.15 0.54
2.00 0.79 50.84 -2.71 0.087 -1.28 0.68
2.00 1.09 70.18 -3.65 0.432 -1.99 0.67
2.05 0.25 15.85 -0.89 0.010 -0.48 0.38
2.05 0.47 30.09 -1.72 0.024 -1.06 0.48
2.05 0.60 38.66 -2.04 0.036 -1.34 0.54
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T (K) Q (W) q (mW/cm2) vs (mm/s) σs (mm/s) vL (mm/s) σL (mm/s)
2.05 0.72 46.53 -2.48 0.043 -1.30 0.62
2.05 0.79 50.84 -3.54 0.038 -1.39 0.87
2.05 0.91 58.32 -4.02 0.398 -1.86 0.66
2.05 1.29 82.87 -4.64 0.437 -1.93 0.76
2.05 1.42 91.44 -5.84 1.036 -2.20 0.77
2.10 0.24 15.66 -1.09 0.050 -0.85 0.39
2.10 0.48 30.61 -2.66 0.020 -1.23 0.61
2.10 0.73 46.72 -3.96 0.124 -2.14 0.56
2.10 0.78 50.52 -4.40 0.028
2.10 1.07 68.82 -6.46 0.749
2.10 1.17 75.40 -6.54 0.047
2.10 1.35 87.06 -6.89 0.726 -2.57 0.84
2.15 0.37 23.84 -2.48 0.229 -2.16 0.62
2.15 0.53 34.28 -3.20 0.118 -2.14 0.66
2.15 0.61 39.44 -4.12 0.154
2.15 0.72 46.46 -4.47 0.140
2.15 0.90 57.80 -9.54 0.850
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B.2 Thermistor Calibration

Table B.4: Thermistor calibration values for the temperature probe.

T (K) R (Ω) T (K) R (Ω) T (K) R (Ω)
1.800 8072.56 2.898 3611.97 8.999 983.23
1.825 7862.68 3.000 3436.60 9.500 935.98
1.850 7664.54 3.100 3279.08 9.999 894.08
1.875 7473.03 3.200 3135.24 15.003 632.01
1.899 7291.78 3.300 3003.00 20.001 500.55
1.924 7119.82 3.402 2882.87 25.000 418.80
1.950 6952.31 3.500 2771.30 29.998 362.06
1.974 6794.91 3.598 2673.94 35.000 320.11
1.998 6650.84 3.707 2569.89 40.000 287.66
2.025 6503.73 3.801 2488.49 45.001 261.73
2.050 6354.26 3.899 2407.52 50.000 240.55
2.075 6217.48 3.999 2331.51 55.002 222.87
2.099 6087.40 4.100 2259.98 60.001 207.88
2.125 5960.87 4.200 2192.75 65.001 194.98
2.148 5843.21 4.300 2130.46 70.001 183.76
2.174 5722.04 4.400 2071.63 75.001 173.87
2.200 5609.42 4.501 2016.93 80.002 165.12
2.226 5503.34 4.999 1785.24 85.003 157.28
2.250 5396.94 5.497 1605.92 90.003 150.20
2.276 5294.60 6.000 1462.98 95.003 143.79
2.299 5197.70 6.501 1346.34 100.002 137.97
2.400 4842.04 7.007 1247.98 150.024 99.20
2.498 4532.59 7.501 1167.29 200.027 78.21
2.600 4260.75 8.000 1097.34 250.032 65.10
2.700 4019.61 8.498 1036.37 300.048 56.20
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B.3 Mutual Friction Coefficients

Table B.5: Values of the mutual friction parameters defined in Eq. (2.23).

T (K) α α′ T (K) α α′

1.30 0.034 0.0138 2.12 0.581 -0.0563
1.35 0.042 0.0154 2.14 0.753 -0.1249
1.40 0.051 0.0167 2.16 1.097 -0.3096
1.45 0.061 0.0175 2.162 1.15 -0.3453
1.50 0.072 0.0177 2.164 1.21 -0.3883
1.55 0.084 0.0172 2.166 1.279 -0.4416
1.60 0.097 0.0161 2.168 1.362 -0.5103
1.65 0.111 0.0144 2.170 1.577 -0.6358
1.70 0.126 0.0123 2.172 1.769 -0.7747
1.75 0.142 0.0100 2.174 2.113 -1.0240
1.80 0.16 0.0082 2.176 3.195 -1.8070
1.85 0.181 0.0074 2.1761 3.339 -1.9110
1.90 0.206 0.0083 2.1762 3.514 -2.0370
2.00 0.279 0.0120 2.1763 3.732 -2.1940
2.02 0.302 0.0110 2.1764 4.017 -2.4010
2.04 0.33 0.0083 2.1765 4.417 -2.6900
2.06 0.366 0.0030 2.1766 5.049 -3.1470
2.08 0.414 -0.0067 2.1767 6.347 -4.0860
2.10 0.481 -0.0241
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B.4 Pulsed Counterflow Parameters

Table B.6: Experimental parameters for the pulsed counterflow experiments pre-
sented in Chapters 6 and 7 and plotted in Fig. 6.2. The color of the text corresponds
to the lowest (blue), middle (black) and highest (red) temperature ranges used to
form the temperature-conditioned distributions in Fig. 6.12 and summarized in Ta-
ble 6.1. The Date, Movie File and Pulse denote the source of the data, q is the heat
flux and T is the temperature.

Date Movie File Pulse q mW/cm2 T (K)
101707 pulsed7_80fps_2300mW 1 148 1.71
101707 pulsed7_80fps_2300mW 2 148 1.74
101707 pulsed7_80fps_2300mW 3 148 1.77
101707 pulsed7_80fps_2300mW 4 148 1.79
101707 pulsed5_60fps_1250mW 1 80 1.86
101707 pulsed5_60fps_1250mW 2 80 1.87
101707 pulsed5_60fps_1250mW 3 80 1.88
102307 pulsed4_80fps_2700mW 1 174 1.88
102507 pulsed6_80fps_1660mW 1 107 1.71
102507 pulsed6_80fps_1660mW 2 107 1.74
102507 pulsed6_80fps_1660mW 3 107 1.77
102507 pulsed5_100fps_2300mW 1 148 1.84
102507 pulsed5_100fps_2300mW 2 148 1.85
102507 pulsed5_100fps_2300mW 3 148 1.87
102307 pulsed1_80fps_1500mW 1 96 1.90
102307 pulsed1_80fps_1500mW 2 96 1.92
102307 pulsed1_80fps_1500mW 3 96 1.93
102307 pulsed1_80fps_1500mW 4 96 1.95
102307 pulsed2_60fps_2000mW 1 129 1.91
102307 pulsed2_60fps_2000mW 2 129 1.93
102307 pulsed2_60fps_2000mW 3 129 1.96
102307 pulsed3_60fps_2000mW 1 129 1.89
102307 pulsed3_60fps_2000mW 2 129 1.92
102307 pulsed3_60fps_2000mW 3 129 1.94
102307 pulsed4_80fps_2700mW 2 174 1.90
102307 pulsed6_100fps_2000mW 1 129 1.95
102307 pulsed6_100fps_2000mW 2 129 1.96
102507 pulsed5_100fps_2300mW 4 148 1.88
101707 pulsed1_80fps_1000mW 1 64 1.99
101707 pulsed1_80fps_1000mW 2 64 2.00
101707 pulsed1_80fps_1000mW 3 64 2.01
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Date Movie File Pulse q mW/cm2 T (K)
101707 pulsed1_80fps_1000mW 4 64 2.02
102307 pulsed6_100fps_2000mW 3 129 1.98
102507 pulsed4_100fps_1200mW 1 77 1.96
102507 pulsed4_100fps_1200mW 2 77 1.98
102507 pulsed4_100fps_1200mW 3 77 2.02
102507 pulsed2_80fps_2000mW 1 129 2.00
102507 pulsed2_80fps_2000mW 2 129 2.02
102507 pulsed2_80fps_2000mW 3 129 2.04
102507 pulsed3_80fps_900mW 1 58 2.01
102507 pulsed3_80fps_900mW 2 58 2.03
102507 pulsed3_80fps_900mW 3 58 2.04
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