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Chaos is a purely mathematical term, describing a signal that is aperiodic

and sensitive to initial conditions, but deterministic. Yet, engineers usually see it

as an undesirable effect to be avoided in electronics. The first part of the disser-

tation deals with chaotic oscillation in complementary metal-oxide-semiconductor

integrated circuits (CMOS ICs) as an effect behavior due to high power microwave

or directed electromagnetic energy source. When the circuit is exposed to exter-

nal electromagnetic sources, it has long been conjectured that spurious oscillation

is generated in the circuits. In the first part of this work, we experimentally and

numerically demonstrate that these spurious oscillations, or out-of-band oscillations

are in fact chaotic oscillations. In the second part of the thesis, we exploit a CMOS

chaotic oscillator in building a cryptographic source, a random number generator.



We first demonstrate the presence of chaotic oscillation in standard CMOS

circuits. At radio frequencies, ordinary digital circuits can show unexpected nonlin-

ear responses. We evaluate a CMOS inverter coupled with electrostatic discharging

(ESD) protection circuits, designed with 0.5µm CMOS technology, for their chaotic

oscillations. As the circuit is driven by a direct radio frequency injection, it exhibits

a chaotic dynamics, when the input frequency is higher than the typical maxi-

mum operating frequency of the CMOS inverter. We observe an aperiodic signal,

a broadband spectrum, and various bifurcations in the experimental results. We

analytically discuss the nonlinear physical effects in the given circuit : ESD diode

rectification, DC bias shift due to a non-quasi static regime operation of the ESD

PN-junction diode, and a nonlinear resonant feedback current path. In order to

predict these chaotic dynamics, we use a transistor-based model, and compare the

model’s performance with the experimental results. In order to verify the presence

of chaotic oscillations mathematically, we build on an ordinary differential equa-

tion model with the circuit-related nonlinearities. We then calculate the largest

Lyapunov exponents to verify the chaotic dynamics. The importance of this work

lies in investigating chaotic dynamics of standard CMOS ICs that has long been

conjectured. In doing so, we experimentally and numerically give evidences for the

presence of chaotic oscillations.

We then report on a random number generator design, in which randomness

derives from a Boolean chaotic oscillator, designed and fabricated as an integrated

circuit. The underlying physics of the chaotic dynamics in the Boolean chaotic oscil-

lator is given by the Boolean delay equation. According to numerical analysis of the



Boolean delay equation, a single node network generates chaotic oscillations when

two delay inputs are incommensurate numbers and the transition time is fast. To

test this hypothesis physically, a discrete Boolean chaotic oscillator is implemented.

Using a CMOS 0.5 µm process, we design and fabricate a CMOS Boolean chaotic

oscillator which consists of a core chaotic oscillator and a source follower buffer.

Chaotic dynamics are verified using time and frequency domain analysis, and the

largest Lyapunov exponents are calculated. The measured bit sequences do make a

suitable randomness source, as determined via National Institute of Standards and

Technology (NIST) standard statistical tests version 2.1.
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Chapter 1

Introduction

1.1 Motivation

Chaotic dynamics describe a signal that is aperiodic, and sensitive to initial

conditions, yet deterministic. Chaotic oscillations have long been studied as an in-

triguing mathematical phenomenon, yet engineers usually see it as an undesirable

effect to be avoided in designed systems. However, a new view has recently emerged,

and researchers now recognize that chaos may offer substantial benefits to a number

of engineering applications, including communications, remote sensing, and cryp-

tography. This change in perspective was prompted by two important discoveries:

(1) chaotic systems are easily controlled [2] and (2) multiple chaotic systems can

synchronize [3]. These discoveries have shown that the unpredictable instability

of chaos may be transformed into natural versatility and flexibility. Consequently,

much theoretical and experimental research has advanced this new area of chaos

engineering.

Many chaotic systems require chaotic circuits or chaotic oscillators as core

parts. The design of chaotic oscillators has been a field of increasing interest during

the past few decades. After the first thrust of chaotic circuits in the early 1980s, the

development of chaotic circuits has taken interesting paths in unique directions [1].

The main design goal in chaotic circuits has been to develop new chaotic circuits,

1



and to study the nonlinear dynamics responsible for chaos generation. The study

of chaotic circuit design has been more popular ever since scientists and engineers

began to find applications of these chaotic circuits in fields such as communication

and cryptography [4, 5].

Most of the present chaotic circuits are developed through careful modeling of

nonlinear dynamics and are purposely designed to operate in the chaotic regions. We

would like to introduce a new paradigm of generating chaotic oscillations that utilize

the chaotic oscillations present in standard CMOS circuit design. In this thesis, we

study the chaotic dynamics observed in a practical integrated circuit (IC). This is,

to the author’s knowledge, the first work demonstrating chaotic oscillations in a

generic CMOS integrated circuit.

Not only does chaotic oscillation in standard CMOS circuits provide an oppor-

tunity to develop chaotic circuits in the simplest structures, it can also motivate a

better understanding of the stability of electronics when are exposed to high power

microwave sources. Especially in the operation of radio frequency CMOS integrated

circuits, we observe various forms of instability and other effects. As a consequence

of such high power microwave signals coupling to the circuits, many forms of destruc-

tive and non-destructive effects occur and are reported [6]. Examples of destructive

effects include junction and dielectric breakdown, which are merely physical damages

of systems. As examples of non-destructive effects, researchers have identified some

low-order nonlinear effects, usually categorized as a single bit error [7], a latch-up

[8], or even a relaxation oscillation [9]. Yet, there have been no reported observa-

tions of higher-order effects like chaotic oscillation in generic CMOS circuits when a
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given circuit is excited by electromagnetic interference. In many different contexts,

as ways to characterize nonlinear behaviors of radio frequency power amplifier de-

sign, many studies suggest high-order instability [10], or spurious oscillation [11], or

parametric subharmonic oscillation [12], but none have analyzed this effect further

in the context of nonlinear dynamics. The importance of understanding chaotic

oscillation lies in the fact that, unlike a low-order instability, this chaotic oscillation

can actually drive the system into a temporary reset or failure. This is of interest

to people studying high power microwave (HPM) effects. The effect under exposure

to HPM sources is the concern, and if a large RF signal can drive the system into a

chaotic state, then this could bring new ways to destroy or upset the system without

physically damaging the system.

Another topic in this thesis is the use of CMOS chaotic circuits in the design of

random number generators, which is key in the fields of hardware cryptography. A

random number generator in hardware cryptography is used mainly for the security

and privacy of users. Building a successful cryptographic solution relies heavily on

the outcomes of randomness in the system. Among many candidates for random

sources, the chaotic oscillator has gained popularity over many non-deterministic

sources like thermal noise and stray radio frequency waves. In building a random

number generator to be more compatible with CMOS technology, we examine an

important class of generating chaotic oscillations, that is, Boolean Chaos. In this

way, we have successfully built a CMOS Boolean chaotic oscillator which is feasible

for generating random numbers. The NIST statistical test version 2.1 is perform to

check its feasibility [13].
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1.2 Theoretical Background

To demonstrate the presence of chaotic dynamics in electronics, at the funda-

mental stages, we need to study circuits in the nonlinear dynamics context. In this

sense, it is important to look at previous studies regarding chaotic circuit develop-

ment. For background, many terms, characterizations, and the structure of generic

chaotic circuits are reviewed.

Many HPM effects and directed electromagnetic source effects have been re-

ported. We review several examples of these effects, and categorize them as either

non-destructive and destructive effects.

1.2.1 Chaotic Circuits in Nonlinear Dynamics

Chaos theory describes the behavior of a dynamical system that is aperiodic,

and sensitive to initial conditions, yet deterministic. Chaotic systems are encoun-

tered in a wide variety of fields including chemistry [14], biology [15], optics [16], and

electronics [17]. This definition of chaos is generally an accepted one throughout a

broad community, including mathematics, pure and applied physics, and engineer-

ing.

At first, study of chaotic circuits has generally been purely for academic and

theoretical reasons. Chaotic circuits were built as physical tools to study the non-

linear dynamics described by a set of governing equations. Mathematicians and

theoretical physicists built chaotic circuits to explain the dynamics of complex sys-

tems. Lately, research in chaotic circuits has been extended to actual applications
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in communication and cryptography. New types of chaotic oscillators are increas-

ingly being introduced to meet the needs in such fields. Here, we would like to

summarize the work and research trends in chaotic circuits, along with introducing

the important works.

At this point, it is interesting to note an important finding in developments of

chaotic circuits: chaos synchronization. Since chaotic signals are hard to control and

predict, many engineers have neglected or underestimated their use in engineering

systems [3]. Due to the discovery of the interesting phenomenon that chaotic sig-

nals can synchronize, chaos research has expanded to the engineering fields as well.

Likewise, chaotic circuits play central roles in the physical implementation of chaotic

systems. As an active research topic, new types of chaotic circuits are introduced

to meet the needs of system. We will introduce a few important chaotic circuits,

and will categorize numerous chaotic circuits by the method of chaotic oscillation

generation.

• Chaotic circuits, from nonlinear nature of semiconductor device parameters

[1] and [18].

• Chaotic circuits, from piecewise-linear negative resistance [19] and [20]

• Chaotic circuits, from hysteresis [21] and [22].

• Chaotic circuits, for high speed operation [23], [24], and [25].

At first, chaotic circuits were developed as a tool to validate nonlinear dynam-

ics theory. Famous attractors named after Poincare, Lorenz, and Rossler have all
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been subjects of study in mathematical modeling of complex nature. An attrac-

tor is a set of points that is used to describe a system towards which the system

evolves. Scientists have built chaotic circuits to validate their models. One of the

early examples of chaotic circuits is the “Linsay circuit,” or RLD circuit, made of

a nonlinear diode, a resistor, and an inductor with a non-autonomous signal exci-

tation. The first electronic circuit implementations appeared in the mid-1980s with

the driven anharmonic oscillator [1]. Fig. 1.1(a) shows the diagram of this chaotic

circuit. Its nonlinear element in this chaotic circuit is a nonlinear p-n junction diode

whose capacitance varies as the voltage across the junction changes. As the circuit

is driven by a signal generator and its magnitude changes, period doubling as well as

period tripling and quintupling, and other subharmonic generations are observed, as

shown in Fig. 1.1(b). Further study on these driven RLD chaotic circuits revealed

important nonlinear dynamics. Ref.[26] explains the universal behavior of chaotic

oscillation seen in this type of circuit including important features of chaotic dynam-

ics such as intermittency, crises, period doubling, and coupled oscillator behavior.

The junction capacitance was identified as the source of chaotic oscillation. The

capacitance varies with applied voltage as well as applied signal frequency. Another

interesting work relies on the chaos found in a driven diode-terminated transmission

line, with the transmission line impedance mismatched with that of the source [18].

Ref.[18] discusses the relationship of reverse recovery time of the junction diode with

the generated chaos.

Another class of chaotic circuits is based on a piecewise-linear resistance, usu-

ally implemented with operational transconductance amplifiers. One of the most
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(a)

(b)

Figure 1.1: (a) Circuit diagram of driven anharmonic oscillator. This
circuit consists of a nonlinear capacitor, a resistor, and an inductor [1].
(b) Voltage spectrums as RF amplitudes change, driving circuits from
periodic oscillation to chaotic oscillation.
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famous chaotic circuits is probably Chua’s circuit, shown in Fig. 1.2(a) [19]. This

circuit consists of linear capacitors, inductors, and a diode with negative resistance

whose current and voltage relation is shown in Fig. 1.2(b). For chaotic oscillation,

the DC load line has to generate two unstable equilibrium points in the transfer

curve of the Chua diode. In other words, we need at least two unstable equilib-

rium points, one to provide stretching dynamics and the other to provide folding

dynamics. Nearby trajectories of a dynamical system are repeatedly diverged ex-

ponentially and converged back together in phase space. The operating principle of

(a) (b)

Figure 1.2: (a) Circuit diagram of Chua chaotic circuit. (b) Current-
voltage transfer characteristics of Chua diode [19].

this circuit is that the DC equilibrium points are given by the intersection between

vR-iR characteristics of the nonlinear element and the load line 1/R. For the general

double scroll strange attractor, the circuit has three DC equilibrium points or three

intersections. One of them is at the origin and the other two are usually located at

8



the second and fourth quadrants. These two latter points act as the fixed points

in the attractor. There are many different versions of Chua’s circuit as the Chua

diode, or the negative resistance function can be implemented with various kinds of

forms. This work [27] is the first monolithic realization of the nonlinear element in

Chua’s circuit.

While Chua’s circuit relies on the nonlinearity of Chua’s diode, the circuit first

introduced in [21] generates chaotic oscillation via hysteresis. This circuit, shown

in Fig.1.3, consists of op-amps which produce a type of hysteresis. The basic idea

Figure 1.3: Circuit diagram of an RC Op-Amp chaos generator using a
hysteresis [21].
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is to begin with second-order ordinary differential equations whose nonlinearity is

mainly from a type of bent hysteresis. The modification is made so that each cycle of

the dynamical system produces the hysteresis to a different point of its loop which

eventually causes chaotic oscillation [28]. In Fig. 1.3, the circuits with O1, O2,

and O3 form a dynamical system and O3, O4, O5, and O6 form a bent hysteresis

nonlinearity.

Another important class of chaotic oscillators aims at the generation of a high

frequency chaotic signal. Due to an increasing need for high frequency chaotic os-

cillators, various types of chaotic oscillators have been developed. However, most

of the important attempts in designing high frequency chaotic oscillators involve

the adaptation of nonlinear radio frequency components, such as the phase-locked

loop, the oscillator, and the power amplifier. A phase-locked loop (PLL) is a func-

tional device, widely used to synthesize and convert the frequency, and is used as

a frequency-modulated demodulator. The basic configuration of a PLL consists of

a phase detector, a low-pass filter, and a voltage controlled oscillator, as shown

in Fig. 1.4 [23]. Chaotic oscillation is observed when the maximum angular fre-

quency deviation exceeds some critical value. This critical value is chosen so that

the frequency difference between the free-running frequency and the input carrier

frequency is slightly greater than the pull-in frequency in order to realize the out-

of-lock condition.

The Colpitts oscillator [24] which is shown in Fig. 1.5, consists of a single

bipolar junction transistor with the feedback network from an inductor L with a

series resistanceRL, and a capacitive divider from C1 and C2. The complex dynamics
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(a)

(b)

Figure 1.4: (a) Block digram of a phase-lock loop (PLL). (b) The bottom
right figure shows a broad chaotic spectrum [23].

of the oscillator may be understood by having two equilibrium points, one in the

forward active region and one in the cutoff region, resulting in asymmetric driving

point characteristics [29].
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Figure 1.5: Circuit diagram of a bipolar junction transistor Colpitts oscillator [24].

Another important class of chaotic circuits make use of so-called “Boolean

chaos”. Boolean chaos [25] is a phenomenon in an autonomous network which shows

high dimensional chaotic oscillation, exponential sensitivity to initial conditions, and

has a broad power spectrum. This unique behavior was first described by a group

of mathematicians, using a Boolean delay equation [30]. The circuit node includes

Boolean-like state transitions with a fast transition time, and a feedback loop with

incommensurate delay inputs that lead to Boolean chaotic oscillation. Fig. 1.6

depicts an example of a Boolean chaotic circuit, which consists of digital circuit

elements. The bandwidth of the chaotic oscillation depends on the propagation

delay time as well as the power supply of the system.

Another research approach to chaotic circuits would be to study the necessary

and sufficient mathematical conditions for chaos generation. While there is an ever-
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Figure 1.6: Example of Boolean chaos circuit, which consists of one
NAND gate with three NOT gates.

increasing number of chaotic circuits, the necessary and sufficient mathematical

conditions for chaos generation are unknown. The purpose of this kind of work is to

find the simplest mathematical function that gives rise to chaos and to find general

classes of oscillators that exhibit chaos. Researchers looked for the simplest “jerk”

functions which result in positive Lyapunov exponents [31][32]. A system that has

received considerable attention is

...
x = J(

...
x , ẋ, x) (1.1)

“jerk function”means a function J such that the third-order ODE can be written in

the form of (1.1). The computational model considers systems of the form

...
x = a1ẍ+ a2ϕ(ẍ) + a3ẋ+ a4ϕ(ẋ) + a5x+ a6ϕ(x) + a7 (1.2)

where ϕ(x) is a simple nonlinear function chosen to permit electronic implementation

with diodes and operational amplifiers. The procedure for finding the jerk function

is to run a 4th-order Runge-Kutta algorithm to solve the equations with randomly

chosen coefficients a1-a7, and a selected nonlinear function ϕ(x).

13



Next, there was an attempt to find a design methodology for building chaotic

oscillators [33].This paper explains the three important classes of core oscillators

that are necessary to generate chaotic oscillation. The active networks in Fig. 1.7

are usually voltage controlled current sources.

(a) (b) (c)

Figure 1.7: Classes of core chaotic oscillators. (a) sinusoidal oscillator
with a parallel RC, (b) using diode inductor composite, and (c) with
FET and capacitor composite [33].

1.2.2 Examples of Electromagnetic Interference Effects

Electromagnetic emission is of concern to many circuit designers. This concern

has become more important as improvement in chip technology has led to a higher

density of circuits inside a single chip, and a decrease in the operation wavelength

of the circuit. When high power microwave sources are coupled to a circuit, various

kinds of effects can occur. Examples of external electromagnetic sources are the
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signals from radars and high power microwave weapons that are usually intentionally

designed to bring high power RF outputs.

Microwave signals interference with electronic systems is not an entirely new

concern. Although this may not be exactly fit into the scenario of HPM effects in the

CMOS ICs, the following story is a good example of electromagnetic interference in

our daily lives. We are reminded of the importance of EMI compliance whenever we

take off or land in an airplane, and are requested to refrain from using all electronic

devices. This request suggests that electromagnetic energy emitted from our laptops

and personal devices might induce noise in the communication between airplanes

and control towers. In any case, the importance of keeping electronic systems from

interfering with others is recognized by all designers.

Previous studies have shown that various physical mechanisms result in insta-

bilities when a circuit is excited by microwave signals. The first observation is the

rectification of radio frequency (RF) signals in bipolar junction transistors and field-

effect transistors. When a microwave signal is injected into the base of the BJT,

qualitatively speaking, the AC signal is rectified to a DC value by the nonlinearity

of the emitter-base junction characteristics, and may shift the quiescent point of

operation. Many studies [34, 35] have reported the experimental observation as well

as the mathematical proof of this effect. Low frequency rectification is often within

the operating passband of the circuit, and may have unintended effects on the entire

circuit. Similar behaviors are also observed in junction field-effect transistors [36].

The model in this literature, from a small signal viewpoint, demonstrates that the

effect is caused by device nonlinearity, especially the nonlinear transconductance of
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(a) (b)

Figure 1.8: (a) Diagram of PN-junction in the Avalanche breakdown.
High reverse field creates the multiplications of free electrons by im-
pact ionizations. (b) Scanning electron microscopy image of a junction
breakdown. The arrow region shows a physical PN-junction damage.

the field-effect transistors.

Effects can be grouped into two non-destructive and destructive effect, de-

pending on the degree of damage. First, many PN-junction exist inside the CMOS

structure, and due to high reverse biasing of these PN-junctions, these junctions

can experience breakdowns, as shown in Fig. 1.8. In a high reverse bias state, the

electrons cause impact ionization, resulting in the freeing multiple electrons. This

is called the avalanche breakdown. Eventually, the high reverse fields even break

the bondings of the donors or acceptors, resulting in a sudden current spike. This

is called the Zener breakdown [37]. Another destructive effect is a dielectric break-

down. Most CMOS ICs have dielectrics as insulating layers, and when they are

shorted due to high RF signal coupling, the circuit no longer functions. Gate oxide

16



Figure 1.9: Schematic diagram of CMOS inverter showing two parasitic
bipolar junction transistors Q1 and Q2. Latch-up effects are due to the
BJT action.

breakdown can cause a conduction path between the metal gate and the channel.

These two destructive effects are well known in the start-of-art CMOS technology,

and this damage requires replacement of the parts.

Next, we give a reported example of non-destructive effects. This is a transient-

induced latch-up. Latch-up can occur when the parasitic bipolar transistor action

in the body is turned on, resulting in conduction through the body, rather than

through the channel of the MOSFET device. Fig. 1.9 shows that parasitic BJTs are

present inside a CMOS inverter. This nonlinear mechanism results in overshoot and

undershoot voltage spikes at the outputs and inputs, and most latch-ups occur as a

result of high power pulse electromagnetic interference and electrostatic discharging

[8, 38].

There is no doubt that these examples are harmful in building reliable CMOS
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electronics. However, on the other hand, these effects in standard CMOS circuits

could be targets for researchers developing electromagnetic weapons (EMP) [39].

1.3 Organization of the Thesis

The material presented in this thesis is organized into four chapters. The first

half of the work focuses on the chaotic oscillation found in generic CMOS circuits,

and the second half talks about the specific design of the CMOS Boolean chaotic

oscillator.

Chapter 2 is devoted to an experimental demonstration of chaotic oscillation in

a CMOS inverter design under microwave signal excitation. We present the design

details of the CMOS inverter coupled with electrostatic discharging (ESD) circuits

using On-Semiconductor 0.5 µm technology. We also describe how the experiment

is performed. We give some experimental observations which suggests ch aotic

dynamics. We also give a qualitative analysis of the nonlinear sources.

In Chapter 3, we focus on modeling the chaotic oscillation events demonstrated

in Chapter 2. We present a transistor-based simulation, using BSIM 4 SPICE pa-

rameters and a lumped-element model, and also numerical modeling, built with sets

of ordinary differential equations. We also compute the largest Lyapunov expo-

nents for the outputs generated from the numerical models to verify the existence

of chaotic oscillation.

In Chapter 4, we present a new class of chaotic oscillator, the Boolean chaotic

oscillator. Based on the Boolean delay equation, we verify the presence of chaos in
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such networks. We then test our hypothesis generated with the numerical models by

building a Boolean chaotic oscillator with discrete commercial parts. Using CMOS

0.5 µm technology, we build an on-chip CMOS Boolean chaotic oscillator.

Chapter 5 is devoted to a test of the applicability of the designed Boolean

chaotic oscillator in cryptographic random number generation. With proper post-

processing of the analog signal, we design a random number generator using our

integrated circuit. Moreover, a statistical analysis of the random number generation,

the NIST test suite, is performed to test the feasibility of our circuit as a random

number generation source.

Chapter 6 provides a summary to the thesis and discusses future work.

1.4 List of Contributions

Chaotic oscillation has long been conjectured or observed as an effect of high

power microwave signals or directed electromagnetic signals; however, there has been

no study or thorough proof of the phenomenon. This becomes more problematic

when chaotic oscillation is found in our state-art-technology like CMOS.

One of main reasons that this issue has been overlooked is the divergent re-

search fields involved. As stated, chaotic dynamics in circuits should be studied

in the context of nonlinear dynamics; nonlinear dynamics researchers tradition-

ally characterize chaotic oscillation or circuits via a set of governing mathematical

equations. Period doubling, intermittency, and positive Lyapunov exponents are

important tools in nonlinear dynamics theory for investigating the chaotic nature of
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the various systems. However, chaotic oscillation is not a primary concern for RF

circuit designers, as long as the circuit is classified as unstable.

In this thesis, we investigate the chaotic dynamics in the CMOS integrated

circuits, and validate the presence of chaotic oscillation, when the circuit is under a

direct microwave injection.

In second part of the thesis, we exploit chaotic oscillation in building a random

number generator. Here, we use a new paradigm of chaos generation: Boolean chaos.

We are able to build CMOS on-chip Boolean chaotic oscillators. This type of chaotic

oscillator is well-suited to building a cryptographic random number generator.

The contributions of this thesis can be listed in the following points:

Investigation of chaotic oscillation in standard CMOS digital ICs as

new class of high power microwave effects. (Chapter 2 and chapter 3)

1. Design of Test CMOS ICs: CMOS Inverter coupling with ESD protection

circuits using On-Semiconductor 0.35 µm technology.

2. Direct RF injection experiment on the CMOS IC. Experimental results that

shows evidences of chaotic oscillation.

3. Characterization and analytical discussion of the nonlinearity.

4. Transistor-based circuit modeling based on BSIM4 and numerical modeling to

verify the presence of chaotic oscillation by computing positive largest Lya-

punov exponents.
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Design of Random Number Generator using CMOS Boolean Chaotic

Oscillator (Chapter 4 and Chapter 5)

1. Numerical analysis of a new chaos generation called Boolean chaos.

2. Design of CMOS Boolean chaotic oscillator using On-Semiconductor 0.35 µm

technology, whose bandwidth reaches from DC to 300 MHz.

3. NIST statistical tests about the random number generation using our CMOS

Boolean chaotic oscillator.
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Chapter 2

Experimental Chaotic Oscillation in CMOS Digital Circuits

2.1 Overview

Here, we study the effect of electromagnetic sources, especially high power

microwave (HPM) signals, such as those from radars and directed microwave sources,

on the operation of CMOS integrated circuits. The term “effect” is used to study

the behavior of the circuit, when high power electromagnetic sources are coupled

into the circuit.

Previous study on the “effect” has focused on the behavior of commercial

components. While CMOS has been a start-of-art technology over the last several

decades, little research was done on electromagnetic source effects in CMOS ICs.

As the technology has developed, the device switching rate has gotten higher and

scaling of the devices becomes smaller, making the dielectric of CMOS even thinner.

These devices, in turn, become highly vulnerable to HPM signals, thus causing some

disruptions to the entire system.

In addition, when the circuit is operating in radio frequency range, signal

wavelength is comparable to the dimension of passive components. In this regime,

printed circuit board traces, packaging, bond-wire, and other passive parasitics all

become important to consider. Also, due to high frequency HPM signals, the oper-

ating speed of CMOS IC nearly reaches the maximum operating speed of the design
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circuit, which brings more nonlinear effects to the dynamics of the circuit.

Some reported circuit effects of HPM signals can be categorized as non-destructive

or destructive effects. Destructive effects are caused by large electromagnetic sources

which can permanently damage a system. The damaged components have to be re-

placed for the system to function. Some examples of these permanent damages

are junction breakdown and dielectric breakdown. Non-destructive effects generate

undesirable results, causing disruption to normal behavior. This requires less elec-

tromagnetic energy and effects are temporary. For a system to function again, the

system only requires reset. One example is latch-up, which is caused by turning

on parasitic bipolar junction transistors inside CMOS structure. The details are

explained in Chapter 1.

Another kind of effect is chaotic oscillation. As mentioned, chaos is defined by

aperiodicity and sensitiveness to initial conditions, but is deterministic. Researchers

have long conjectured and observed a high dimensional instability, referring to it as

spurious oscillations, or unstable oscillations [11][12]. This instability is also en-

countered in high power amplifier stability study. Highly nonlinear power amplifiers

are often exposed to these phenomenon, when they are driven under large RF sig-

nal [10]. Confirming the existence of chaotic dynamics in the circuit requires some

nonlinear dynamics background.

Our approach in solving this problem is purely based on investigating the

nonlinear dynamic nature of the designed circuit, because the presence of chaos can

only be proven by in context of nonlinear dynamics. Therefore, the work focuses on

investigating and observing evidences in experiment and numerical analysis.
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In Section 2.2, we give a brief overview of the test circuit and a motivation of

the work with the CMOS technology.

In Section 2.3, we show the design details of CMOS digital ICs, which consist

of a CMOS inverter, a cascade output buffer, and electrostatic discharging (ESD)

protection circuits. The test circuit was designed using Cadence Virtuoso layout

tools and was fabricated using the On-Semiconductor 0.5 um process. Basic DC

and transient test results are given.

In Section 2.4, we present experimental results of the designed circuit under a

direct microwave excitation. We introduce a general experimental procedure and a

test-board design. We suggest some evidences of chaotic oscillation through exper-

imental observations.

In Section 2.5, we include the device physics characterization of nonlinear

sources present in the circuit. We give qualitative and quantitative analysis of these

nonlinear behaviors. Using Lyapunov exponents, we quantify chaotic oscillation in

the experimental results.

2.2 Test Circuit Overview

As stated, previous study has involved mainly commercial devices, and has

used basic models to describe very simple behaviors. On top of this, it is hard to

look inside the physical layouts of circuits due to proprietary restrictions. For these

reasons, we design our circuit in house, starting from layouts to PCB soldering. In

this manner, all of our circuit parameters are known. In addition, all the SPICE
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Figure 2.1: Schematic diagram and basic elements in modern CMOS digital ICs.

parameters of the circuit are provided from the foundary service after the company

measure and extract from their process test wafers.

As shown in Fig. 2.1, many current electronic systems consist of CMOS ICs.

Because the CMOS is the state-art-technology, the study of HPM effects should

also be carried out for CMOS ICs. A CMOS digital logic IC is an important and

standard functional block in many electronic systems. It generally consists of three

main components; electrostatic discharging protection circuits, core logic circuits,

and output buffer. All these are essential parts in the CMOS digital IC. Here, we

design CMOS inverter which has all three components. The test circuit design is

to create basic CMOS ICs, using already established design principles, which is not

much different from the commercial CMOS inverters. By keeping the test circuit

design as generic as possible, we are able to translate our study into general effects

and behaviors.

The following sections cover the design details of three important blocks, as

well as basic tests to confirm their functionality.
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2.3 Design of CMOS Inverter Chain and Electrostatic Discharging

Circuits

ESD Core
Circuit Buffer

Figure 2.2: Basic components of CMOS digital circuit, consisting of elec-
trostatic discharging (ESD) protection circuit, core circuit, and output
buffer.

To demonstrate that chaotic oscillation can occur in the simplest CMOS digital

circuits, a CMOS inverter is designed with an electrostatic discharging (ESD) protec-

tion circuit and an output buffer. The circuit was designed using On-Semiconductor

(formerly AMI) 0.5µm technology from the MOSIS consortium. MOSIS provides ac-

cess to a wide variety of semiconductor processes offered by many different foundries

[40].

A conceptual circuit diagram is shown in Fig. 2.2. The circuit’s input is pro-

tected by a gate-grounded NMOS (ggNMOS) and gate-coupled PMOS (gcPMOS)

ESD structure, and its output is buffered using the cascaded output buffer design.

Table 2.1 summarizes the physical dimensions of the designed circuit. The test cir-
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cuit is packaged with a surface mount type carrier and is soldered onto a printed

circuit board (PCB). An external bypass capacitor of 0.1µF is connected between

the DC power trace and the ground plane on the PCB.

Table 2.1: Physical dimensions of the designed circuit.

ESD M1 M2 M3 M4 M5

Length [µm]
pMOS 0.9 0.6 0.6 0.6 0.6 0.6

nMOS 0.9 0.6 0.6 0.6 0.6 0.6

Width [µm]
pMOS 30 3 10.2 6.9 11.7 25.5

nMOS 30 1.5 5.1 8.7 11.8 20.3

Number of Fingers
pMOS 12 1 1 5 10 16

nMOS 12 1 1 2 5 10

2.3.1 CMOS Inverter

We perform some basic DC tests in both simulation and experiments before

injecting an microwave signal. First, we design an inverter using a complimentary

MOSFET structure. The nMOSFET and pMOSFET are connected in series, either

pulling currents from Vdd or from Gnd.

The switching current of the CMOS inverter is a current flowing at the nFET

and the pFET as shown in Fig. 2.4, which is
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Figure 2.3: (a) Circuit diagram of a CMOS inverter designed using On-
Semiconductor 0.5µm process technology. This circuit resembles the
simplest digital circuit. The circuit consists of ggNMOS and gcPMOS
ESD protection circuits at the input (Ep and En). The inverter functions
at M1 and output buffers M2, M3, M4, and M5 are designed to drive
enough current at the capacitive load. (b) Picture of device-under-test
(DUT) on the printed circuit board.
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Figure 2.4: Circuit diagram of a CMOS inverter. The switching current
is the sum of currents flowing in both the nFET and the pFET.

IDS.MAX = In,SAT = Ip,SAT (2.1)

with

IDS.MAX =
1

2
µnCox

Wn

Ln
(VG − 0− Vth,n)2 =

1

2
µpCox

Wp

Lp
(VDD − VG − |Vth,p|)2. (2.2)

Test results of the DC transfer characteristics are shown in Fig. 2.5. The DC

current is at a maximum when the saturation currents flow in the nFET and pFET

during transition from high to low, as seen in (2.2).

Next, we evaluate the transient behavior of the CMOS inverter. A low-

frequency pulse is injected at the input, and the output voltage is measured in

real time. Table 2.2 summarizes the switching behavior of this circuit. tPHL is de-

fined as the switching time from a high state to a low state (fall time), and tPLH is
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Figure 2.5: Experimental results of DC transfer characteristics and short
current of CMOS inverter in DC condition. Peak current of 3.5 mA is
measured when DC input voltage is at 1.5 V.
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Table 2.2: Switching Characteristics of CMOS inverter.

tPHL [nsec] tPLH [nsec] tPD [nsec] fmax [MHz]

2.5 3.2 2.85 350

the switching time from a low state to a high state (rise time). tPD is an average of

the two, and fmax is an inverse of tPD. Note that there is an increase in the prop-

agation time because of the cascaded output buffer design, which will be explained

shortly.

The maximum operating frequency is determined by the inverse of the sum

of high-to-low and low-to-high propagation delay times. The time delay constant

associated with the discharging of a load capacitor (NMOS switch) is approximately,

tPHL = 0.7 ·Rn · (Cox + CL) (2.3)

The time constant associated with the charging of a load capacitance (PMOS

switch) is,

tPLH = 0.7 ·Rp · (Cox + CL) (2.4)

where Rn and Rp correspond to the channel resistances of the NMOS and the PMOS,

respectively. They differ because of the low mobility associated with holes in the

p-channel MOSFET [41].
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Figure 2.6: Schematic diagram of a cascaded scale-up buffer. The num-
ber of stages N should be an even number, and A is a scale ratio for the
widths of transistors

2.3.2 Cascaded Output Buffer

To drive a capacitive load, introduced by the parasitic capacitance of a scope

probe, we need to design an output buffer. A poorly designed buffer can distort

the original signal as well as introduce an extra delay time. Here, we designed a

cascaded scale-up CMOS buffer, as shown in Fig. 2.6. The number of stages of

the output buffer was carefully adjusted so that there is no degradation in time

delay and performance [41]. We add a string of inverters between the on-chip logic

and the bonding pads. The number of stages N and the scale ratio A are carefully

chosen to minimize the delay of the series of inverters as well as to scale up the input

capacitance of the inverters to match the parasitic load capacitance.

CIN,N = Cin1 · AN = CLoad (2.5)

or

A =

[
CLoad
Cin1

] 1
N

(2.6)
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Figure 2.7: Time evolution of input and output voltage of the designed
buffer. The simulated results show that the output of buffer has only a
small time delay.

To minimize the delay,

(tPHL + tPLH)total = 0.7 ·
N∑
k=1

(Rn1 +Rp1)(Cout1 + ACin1), (2.7)

We take the derivative with respect to N, set the results equal to zero, and solve for

N.

N = ln
CLoad
Cin1

(2.8)

As a result of the calculation above, assuming a 10 pF of loading capacitance,

we design a four stage cascaded output buffer. Fig. 2.7 shows the simulated time

trace of input and output voltage signal of the designed buffer. The simulated

output signal shows a small finite time delay.
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2.3.3 Electrostatic Discharging Protection Circuit

The gate oxide of the MOSFET is the most susceptible to damage from an

electrostatic discharge (ESD). For protection from such an ESD event, it is common

practice to build an extra circuit to protect the core circuit. Here, we build two

junction diodes to prevent the ESD static currents from flowing into the core circuit.

As shown in Fig. 2.2, a gate-grounded NMOS (ggNMOS) in a series with a gate-

coupled PMOS (gcPMOS) is located at the input of the logic circuit. The drain-body

junctions of the NMOS and the PMOS operate as PN-junction diodes, which are

the main junction areas implemented for ESD protection. In the absence of an ESD

event, the two diodes remain reverse-biased, but when a strong positive ESD event

occurs, the gcPMOS turns on, preventing ESD current from flowing into the metal-

oxide of the circuit. When a strong negative ESD event takes place, the ggNMOS

turns on resulting in the ESD current flowing towards the ground.

Fig. 2.8(a) shows the layout of an ESD protection circuit, consisting of a

multi-finger design of ggNMOS and gcPMOS, and a circuit schematic of such a

configuration. The current voltage characteristics of ESD switching are shown in

Fig. 2.9. Since the circuit is held at the DC supply voltage of 4V, gcPMOS turns

on when the ESD voltage exceeds 4V (Region III), and ggNMOS turns on when the

ESD voltage falls below 0V (Region I). During the Region 2, both gcPMOS and

ggNMOS devices are turned off.
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Figure 2.8: (a) Layout of ESD protection circuits. The topmost square
represents a pad design, and the two bottom squares represent several
ESD MOSFETs, connected as back-to-back diode. (b) ESD event oc-
curring at the input of CMOS digital circuits. VDD is biased at 4V, and
IDIODE is measured at the input.
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Figure 2.9: Simulation results of current-voltage characteristics in our
ESD protection circuits. In Region I, ggNMOS turns on, and gcP-
MOS turns on in Region III, and finally ggMNOS and gcPMOS remain
turned off in Region II. The circuit is biased at the supply voltage of 4V.
Current-voltage transfer curves in Region I and III follows the Shockley
diode equations.
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2.4 Experimental Demonstration of Chaotic Oscillation

2.4.1 Experimental Setup

Fig. 2.10 depicts the experimental setup for measuring real-time output volt-

ages, input voltages, and DC supply currents in order to understand the circuit’s

susceptibility to the chaotic oscillation in depth. An Agilent E8257D analog sig-

nal generator is used to generate a periodic sinusoidal signal. A bias tee is used

to measure the detected DC voltage at the circuit input. In this experiment, no

DC offset is superimposed on the RF power since chaotic oscillation caused solely

by microwave excitation is our primary concern. Data acquisition is performed si-

multaneously using a computer program, Agilent VEE, for output voltage, input

voltage, and supply current. RF power and its frequency are also varied as the tun-

ing parameters in this experiment. Input RF power ranges from -5 dBm to 20 dBm

and its frequency is stepped up from 100 MHz to 1 GHz. The DC supply current

is calculated from taking the time-averaged value of the AC current from the DC

power supply, and the DC input voltage is calculated from taking the time-averaged

value of the dynamic input voltage, measured across a large resistance. The time

averaged value of the AC term is equivalent to taking the zeroth term of the signal.

Iavg,DCsupply =
1

T

∫
T

IDC,supply(t)dt (2.9)

Vavg,input =
1

T

∫
T

Vinput(t)dt (2.10)
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Figure 2.10: Experimental setup for measuring output voltage, supply
current, and input rectified voltage. RF signal is directly injected at the
input of device-under-test (DUT), mounted on the PCB, with varying
RF power and frequency. The digital oscilloscope has a high sampling
rate to measure the real time input and output voltages, and the DC
supply current is measured with a current meter.
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2.4.2 Packaging and Printed Circuit Board Design

The test ICs were first packaged using LCC 44 packaging, which is a surface

mounted type. The test ICs has 44 bonding pads located at the outer periphery of

the chip as shown in Fig. 2.8(a). Each pad from a silicon wafer is wire-bonded to

the packaging using wire-bonding technology. When the circuit is operating in the

RF region, this wire-bonding acts as a parasitic inductance, ranging from 1 nH to 5

nH, depending on the length of the wires.

Then, we carefully design a printed circuit board (PCB) using commercial

software. The board is made of FR4 material, and trace lines are made of copper

metal layers. For high frequency operation, a de-coupling capacitor of 0.1 muF is

connected between the power trace and ground, located close to the power pin on

the chip. This acts as a by-pass capacitor.

DC power is transferred via a surface mount type connector. To accommo-

date all the parasitic impedances from the elements introduced here, we separately

measure the two port network impedance, and include this in the model.

A picture of the test circuit on the PCB board is shown in Fig. 2.3(b).

2.4.3 Experimental Results under Microwave Excitation

We acquire long time series data and then calculate the magnitude of the

Fourier transform from them. Integrating the Fourier magnitude over a frequency

window gives the power spectral density (PSD). The PSD is plotted as input RF

power and frequency are varied. A high-impedance oscilloscope probe is used, having
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a bandwidth higher than the maximum output frequency. The results show two

distinctively different regions: a normal region and a region with possible chaotic

dynamics.

At an RF input frequency of 100MHz, the inverter operates in the normal

regime. Fig. 2.11(a) shows the periodic time evolution of the output voltage. In the

frequency spectrum of the signal in Fig. 2.11(b), there is a strong fundamental har-

monic at 100MHz and numerous superharmonics at the integer multiples of 100MHz.

When the RF frequency increases beyond the maximum oscillation frequency noted

in Table 2.2, the circuit enters a possible chaotic region. Therefore, output voltages

become aperiodic in the time domain, and in the frequency spectrum, numerous

sub-harmonics are generated along with the fundamental harmonics, shown in Fig.

2.12(a) and (b). We observe some evidence of chaotic oscillation in Fig. 2.13, which

is an enlarged view of Fig. 2.12(b). We observe a broadband power spectrum (BB)

and complex spectrum.

2.4.4 Calculation of Lyapunov Exponents

Lyapunov exponents (LEs) are important parameters to quantify chaos. The

largest Lyapunov exponents are often used to characterize the presence of chaotic

oscillation. The technique for calculating LEs from differential equations is well-

known and straightforward, introduced in many contexts [42]. However, calculating

LEs for the experimental data require extra steps. Experimental data consists of

only a single observable. The well-known technique of phase space reconstruction
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Figure 2.11: (a) Time evolution of output signal when input RF signal
has power of 14 dBm and frequency of 100 MHz (b) Spectrogram of
output voltage as input RF power is varied. Only the superharmonics
are observed.
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Figure 2.12: (a) Time evolution of output signal when input RF signal
has power of 14 dBm and frequency of 500 MHz (b) Spectrogram of
output voltage as input RF power is varied.
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Figure 2.14: Largest Lyapunov exponents (λmax) with varying PIN . The
measured data for each PIN are calculated for λmax. The circuit is driven
with input RF signal with a frequency of 500 MHz, as in Fig. 2.12(b).

with the method of delay is used to correctly reconstruct the phase space. Then the

nearest neighbor is found by searching for the points that minimize the distances to

the reference points. More details of calculating LEs from experimental results is

explained in [43].

Based on the measured time-series data, we compute the largest LEs. Fig.

2.14 shows the largest LEs when the input RF signal has a frequency of 500 MHz.

The largest LEs are calculated for each PIN . Positive LEs mean the signals are

diverging from each other. Zero LEs indicates that the signals are periodic. Direct

comparison can be made with the results shown in Fig. 2.12(b). The region with
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complex spectrum shows λmax with the positive numbers, whereas the other regions

have λmax close to zero.

2.5 Discussion : Theoretical Background of Nonlinear Sources

We now discuss analytically the nonlinear effects pertinent to our circuit. The

nonlinear effects in our circuit are:

• ESD Diode Rectification, which causes a DC value to appear at the input of

the inverter.

• Non-quasi static Regime in PN-Junction, which is due to a high input fre-

quency comparable to the inverse of the reverse recovery time (trr).

• LC Resonant Current of the Power Line.

2.5.1 ESD-to-RFI Rectification

The RF input signal undergoes a rectification due to the ESD junction diodes,

thus generating a DC offset for the inverting logic circuit. Fig. 2.15 shows the

rectified DC input voltage as input frequency and the RF power changes accord-

ingly. DC rectification is at first generated by the drain-body diode junction of the

ggNMOS. As the amplitude increases, the gcPMOS also starts to rectify, resulting

in a rectified DC voltage of 1.5 V. At high frequency, the symmetry of rectification

breaks due to an uneven rectification efficiency of the ggNMOS and the gcPMOS.

The shift in the rectified voltage is shown for higher input frequency for this reason

in Fig. 2.15.
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Figure 2.15: Experimental results of rectified DC input voltage (time-
average values). Input voltage is measured across a large resistance
connected at the bias tee. Input voltage is rectified at 1.4 V due to
the rectification of ESD diodes, resulting in a DC offset at the circuit
input.
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We can mathematically derive the rectification of the AC signal by the PN-

diode. From the well-known static diode current equation,

Idiode = Is(e
(V/VT ) − 1), (2.11)

A diode current, injected from sinusoidal RF signal, Vo + vrfcos(wrf t), can be the

equation below using Taylor expansion

Idiode(Vo + vrfcos(ωrf t)) = ID(Vo) + vrfcos(wrf t)Go(Vo) +
(vrfcos(wrf t))

2

2!
G′o

+
(vrfcos(wrf t))

3

3!
G′′o +

(vrfcos(wrf t))
4

4!
G′′′o

+ O(·), (2.12)

where Vo is a DC term, vrf is an AC amplitude, and O(·) is the sum of all the high-

order terms for this Taylor expansion. Also, Go is defined as the transconductance

of the diode by taking the derivative of (2.11) with respect to V at one DC bias.

Idiode(Vo) = Is(e
(Vo/VT ) − 1) = Io (2.13)

Go(Vo) =
dI(Vo)

dV

∣∣∣∣
Vo

=
Is
VT
e(Vo/VT ) =

(Io + Is)

VT
(2.14)

Likewise the first derivative of Go is

G′o(Vo) =
d2I(Vo)

dV 2

∣∣∣∣
Vo

=
Is
V 2
T

e(Vo/VT ) =
(Io + Is)

V 2
T

. (2.15)
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Taking the time averaged value of (2.12), we get

Idiode(Vo + vrfcos(ωrf t)) = ID(Vo) + vrfcos(wrf t)Go(Vo) +
(vrfcos(wrf t))2

2!
G′o

+
(vrfcos(wrf t))3

3!
G′′o +

(vrfcos(wrf t))4

4!
G′′′o

+ O(·), (2.16)

where the odd terms of cos(·) becomes 0. Therefore, (2.12) simplifies to

Idiode(Vo + vrfcos(ωrf t)) = ID(Vo) +
(vrfcos(wrf t))

2

2!
G′o

+
(vrfcos(wrf t))

4

4!
G′′′o +O(·). (2.17)

Taking only the DC terms of the diode current, the diode current from RF signal

follows the square law, when an RF signal has a small amplitude, which is

Idiode,DC = ID(Vo) +
v2rf

2! · 2
· Is
VT

2 +
v4rf

4! · 8
· Is
VT

2 . (2.18)

2.5.2 Non-Quasi Static Analysis in PN-junction

Here, we examine the rectification and transient behaviors of the ESD PN-

junctions. We define the non-quasi static (NQS) region of the PN-junction as follows.

The quasi-static (QS) approximation for the PN-junction diode assumes that the

minority carriers redistribute in a time that is short compared to the period of the

RF input. Under this condition, an RF signal produces an ideal half wave rectified

voltage drop. But, if the transition is very rapid, the QS breaks down, and the time

it takes for the junction voltage to reach complete reverse bias must be considered.

For the NQS case, the rectified voltage does not follow a square law and varies with
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the input frequency. During the forward to reverse region switching, the minority

carriers require a finite time to be removed. We can evaluate this effect by computing

a minority carrier life time and a reverse recovery time.

Diode transients are governed by the transient in the minority carrier with

respect to time. Likewise, the reverse recovery time is an important characterization

parameter. The diffusion of minority carriers in the PN-junction is described by the

time-dependent diffusion equation [37],

∂np(x, t)

∂t
= Dn

∂2np(x, t)

∂x2
+
np(x, t)− npo

τn
(2.19)

where np(x, t) is the minority carrier concentration, npo is the minority carrier con-

centration at zero bias, Dn is the diffusion constant, and τn is the minority carrier

lifetime. In our ESD junction, we assume a short-base diode approximation since

the physical size of the ESD PN-junction has a short width. The minority carrier

life time is defined,

τeff =
L2
eff

Dn

(2.20)

where the diffusion constant is given by,

Dn =
kT

q
µn (2.21)

where k is Boltzmann’s constant, T is temperature, and µn is the mobility of an

electron.

For our given structure in the PN-junction, the minority carrier life time is

estimated to be 234 ps for electrons and 658 ps for holes [44]. We share the same ESD

protection circuit design as descirbed earlier. The numbers are different because
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of the difference in electron and hole mobility. As a result of this difference, the

rectification efficiency of ggNMOS and gcPMOS differs. Fig. 2.14 also demonstrates

this effect by a dependence of the rectified voltage with the change in input frequency.

Further analysis and details of this effect for our circuit are discussed in [44].

As the frequency becomes higher, the reverse recovery time, the time required

to switch the PN junction diodes from the forward to the complete-reverse region,

becomes comparable to the input frequency. For example, when the ESD diodes

switch from the forward to the reverse region, minority carriers on the other side of

the junction require a finite time to be removed. Under the QS regime, the reverse

recovery time is very small compared to the period of the input signal. The junction

will conduct only for half of the input period. Under the NQS regime, the diode

will conduct more than half the period and the rectification efficiency of the diode

decreases.

2.5.3 Low Frequency LC Resonant Current

A feedback current flows due to the LC path caused by the inductance of the

bonding wires, and the nonlinear capacitance due to the ESD junction diodes. In ad-

dition, this feedback current usually has low frequency harmonics, whose frequency

can be approximately estimated by an inverse of the product of the inductance and

the nonlinear capacitance value of the ESD diodes. Since C is dependent on the volt-

age across the junction, the harmonic frequency varies with the applied bias. These

harmonics are mixed with the fundamental driven harmonics, and these harmonics
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are shown in the spectrogram in Fig. 2.12(b). When the ESD device is turned

off, the resonant frequency of the LC current are higher than 3 GHz, because the

equivalent capacitance of ESD device is an order of 1 pF. However, when the ESD

device turns on, the resonant frequency of LC current comes down to our operating

regime, since the equivalent capacitance of ESD diode becomes tens of pico farad.

2.6 Conclusions

We have effectively demonstrated in the experiment that the CMOS digital

circuit shows chaotic oscillation. When there is a direct microwave excitation of

a sinusoidal signal at the input, the strong aperiodicity, various bifurcations, and

broadband spectrum are good indications of chaotic oscillation in this designed

circuit.

We also analytically discuss the nonlinear effects in our circuit. A large RF

signal is rectified, causing DC values to appear at the input of the inverter. Two

other nonlinear effects are the non-quasi static regime operation of the PN-junction

and a nonlinear LC resonant current.

A complete mathematical model of the feasibility of generating chaotic oscil-

lation will follow in the next chapter. As stated above, we discuss the nonlinear

effects which are a rectification of the DC signal due to the PN-junction of the ESD

protection circuits, a nonlinear capacitance of the ESD protection circuits, and a

generation of the low sub-harmonic components due to the coupling of parasitic

inductance and nonlinear capacitance.
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With mathematical modeling of the circuit, we can better demonstrate the

possibility of chaotic oscillation. In the next chapter, a conceptual model, including

all the nonlinearities, will be developed. We will also discuss the mathematical

calculation of Lyapunov exponents, which is an efficient way of demonstrating the

presence of chaotic oscillation.
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Chapter 3

Modeling of Chaotic Oscillation in CMOS Digital Circuits

3.1 Overview

In the last chapter, we have demonstrated the experimental evidences of

chaotic oscillation. Based on the discussion on the source of nonlinearity, here,

we would like to build a numerical model to find chaotic oscillation in the given

structure. In other words, the experimental evidence of chaotic oscillation such as

the aperiodicity, bifurcations, and broadband power spectrum were a very good sug-

gestion that the chaotic oscillation can occur in the driven CMOS inverter structure.

By the definition of chaos requires the signal to be aperiodic and sensitive to initial

conditions, and has to be deterministic, which means outputs are predictable from

inputs.

The experimental results in the previous chapter suggest the presence of chaotic

oscillation in our circuits. However, more mathematical evidence is needed to prove

the existence of chaotic oscillation. Through building a mathematical model, we can

prove the deterministic nature of chaotic oscillation as well as its sensitivity to ini-

tial conditions. In the numerical model, we intend to introduce all the nonlinearities

discussed above.

In addition, compact modeling with the correct SPICE parameters is per-

formed to build a model to predict the RF onset of chaotic oscillation. SPICE
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modeling is useful in circuit design in predicting and modeling results of the actual

circuits. There have been many developments in SPICE parameters to have a good

match with the measured data. One of the standard transistor models is the Berke-

ley Short-channel IGFET Model (BSIM), and it has been proven to be valid in high

speed operations up to several tens gigahertz. We intend to build a model that

can predict the region of chaotic oscillation using BSIM parameters and additional

features.

In Section 3.2, a transistor-based simulation is performed to predict the onset

of microwave amplitude when the circuit enters the chaotic region. We explain the

theoretical background of BSIM models and the simulation.

In Section 3.3, we discuss the derivation of a mathematical model. We review

the nonlinear equations included in this model, and we compute the largest Lya-

punov exponents to validate the presence of chaotic oscillation found in the previous

chapter.

3.2 Transistor-Based Simulation : Compact Modeling

3.2.1 Non-Quasi Static features in the BSIM model

Recently, many traditional models for a MOSFET device have started to fall

behind, since the operating frequency of the system has begun to enter the regimes

close to their threshold or cutoff frequency limits. In other words, parameters or

equations have to be modified to maintain good device models. There has been

many efforts to improve current state-of-the-art models, mainly by introducing more
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nonlinearities.

Among many accurate MOSFET device models, the Berkeley Short-channel

IGFET Model (abbreviated as BSIM) has become an industry standard for both

analog and radio frequency circuits. Here, we are interested in the non-quasi static

nature of this model, and how this NQS features in the BSIM agree with the exper-

imental results, described previously. A NQS region is defined by circuit operation

near cut-off frequency or under a very rapid transient operation. Before comparing

the simulation and experiment results, we introduce the developments of the BSIM

in terms of NQS model.

BSIM3, published in [45], includes a basic NQS model, called the charge-deficit

NQS model. Fig. 3.1 explains the basic operation of NQS models. Relmore and C(s,d)g

are added to model accurately the finite time for the channel charge to build-up.

Both the transport and charging components of channel charges can be written as

ID,G,S(t) = ID,G,S(DC) +
∂Qd,g,s(t)

∂t
(3.1)

An internal node, Qdef is created to keep track of the amount of deficit and

surplus channel charge necessary to reach equilibrium.

BSIM4 includes not only the features described above, but also a gate electrode

and intrinsic-input resistance model and a substrate resistive network. The gate

electrode model considers the relaxation time effect due to the distributive RC nature

of the channel. This is more or less identical to the charge deficit NQS model of

BSIM3.

Another important NQS feature is the substrate resistance network. It is
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Figure 3.1: (a) Diagram of charge-deficit Non-Quasi-Static model. (b)
Diagram shows an equivalent network for the channel of MOSFET. (c)
NQS sub-circuit for transient analysis.

essential to consider the high frequency coupling through the substrate for RF circuit

simulation. In short, this feature allows an accurate model of reverse recovery time.

Fig. 3.2 describes the resistive network of the substrate to the channel coupling.

For accurate simulation, MOSIS provides the list of BSIM parameters after

fabrication. The full list of BSIM parameters is attached in Appendix A. To turn

on the NQS features described here, the model selectors, such as trnqsMod and

rbodyMod, are turned on. In addition to the NQS features in the BSIM MOSFET

device, we add the two port network parameters in the simulation. This linear par-

asitic elements can give rises to resonances, which may influence the input voltage.
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Figure 3.2: Diagram for Berkeley Short-channel IGFET Model 4 sub-
strate resistance network, which models non-quasi static region. This
resembles a reverse recovery time of ESD junction diodes during switch-
ing.

The parasitic impedances includes the ball bond wires, PCB traces, lead frames, and

impedance introduced from the experimental apparatus. This effect is more pro-

nounced as the operating wavelength becomes comparable to the lumped elements.

3.2.2 Simulation Results

With the commercial software tool, Agilent Advanced Design System (ADS),

we perform a harmonic balance simulation on the circuits. A harmonic balance (HB)

simulation allows us to perform time and frequency domain analysis over varying

circuit parameters simultaneously. This HB simulation is widely used in calculating

the steady state solutions for the RF circuits containing nonlinear components.

The Fourier series can represent periodic voltages and currents in circuits as the

summation of harmonics.The HB method works for a circuit that can be separated
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into linear and nonlinear portions. The advantage of harmonic balance is that the

node voltages for all the linear elements are calculated in the frequency domain,

while nonlinear elements are calculated in the time domain. In addition, the HB

simulation allows us to look at time and frequency analysis over varying parameters

with the faster simulation time. However, the detailed transient oscillation of the

circuit can only be observed by transient simulation with fine and accurate time

steps and a long simulation time. Besides, the HB simulation allows an inclusion

of the supplementary custom models to accurately simulate the circuit such as S-

parameters of parasitics. The input to the nonlinear circuit is treated as

vin(t) = Real

[
K∑
k=0

Vk exp(j 2πkf t)

]
, (3.2)

where f is the fundamental frequency of the input, the Vk is the complex Fourier

coefficients, the K is the order of harmonics.

Here, we measure the scattering parameters for the input linear parasitics men-

tioned in the previous section for the true input voltage to the circuit. We design

the same PCB board without the DUT and measure 2 port scattering parameters in

order to observe S21, the forward transmission coefficient, and S11, the forward re-

flection coefficient. The scattering parameters are complex values at each frequency

point, measured from the network analyzer. Fig. 3.4 plots the measured S21 and

S11.

This result corresponds to Fig. 3.5, which shows a resonance around 700 MHz

when the input RF power is 10 dBm.
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Figure 3.3: Schematic diagram explaining how the harmonic balance
simulation operates. F (V ) solves the nonlinear and linear parts sepa-
rately. Y is the transadmittance matrix for the linear parts, and Q and
IG are the frequency-domain factors for the nonlinear circuits.

This effect of linear parasitic impedances from the traces in the PCB, and bond

wires in the chip package, can be significant to generating extra harmonic compo-

nents. Usually, when we design circuits operating at high frequency, it is common

practice to build passive matching circuits. However, for the case of external mi-

crowave excitation, the input is not perfectly matched to the correct frequency.

Fig. 3.6 is a complete circuit diagram for the simulation. There are two device

models used in this circuit simulation - BSIM4 and BSIM3. Because the BSIM4

features the NQS features explained previously, we set the ESD protection circuits

with BSIM4. The current version of BSIM4 consists of both the charge-deficit

model and substrate resistive network model, whereas the BSIM3 consists of only
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Figure 3.4: Forward transmission coefficient S21 (red) and forward re-
flection coefficient S11 (blue). Notice there is a 4dB decrease in S21,
meaning less than half of input power is transmitted at the frequency
around 700 MHz.

the charge-deficit model. The rest of the transistors are modeled with BSIM3. At

the input the circuit, we include the measured scattering parameters. The harmonic

balance simulation is performed along with the parametric sweep on the fundamental

input frequency.

60



0 500 1000 1500
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

f
IN

 [MHz]

V
D

C
,in

p
u

t [V
]

 

 

P
IN

=10 dBm

Figure 3.5: DC detected input voltage as frequency of input is changing
and RF amplitude is fixed at 10 dBm. The trough around 700 MHz
corresponds with the decline of forward transmission coefficient in Fig.
3.4

61



Vout2 Vout3Vout1

H a rmonic Ba la nc e

H B1

O rder[1]=8

F req[1]=my F req MH z

HAR MO NIC B ALANCE

S 2P

S N P1

21

Ref

MO S F E T_N MO S

MO S F E T22

Model=AMI06N MO S

MO S F E T_N MO S

MO S F E T18

Model=AMI06N MO S

MO S F E T_N MO S

MO S F E T48

Model=AMI06N MO S

MO S F E T_PMO S

MO S F E T47

Model=AMI06PMO S

MO S F E T_PMO S

MO S F E T20

Model=AMI06PMO S

MO S F E T_PMO S

MO S F E T19

Model=AMI06PMO S

MO S F E T_PMO S

MO S F E T45

Model=AMI06PMO S

MO S F E T_N MO S

MO S F E T21
Model=AMI06N MO S

MO S F E T_PMO S

MO S F E T46

Model=AMI06PMO S

MO S F E T_N MO S

MO S F E T17
Model=AMI06N MO S

VAR
VAR 4

my Tt=2.1 ns

E qn
V a r

VAR

VAR 2

my Pow=25

E qn
V a r

VAR

VAR 5
Vin=1.0

E qn
V a r

VAR

VAR 1

my F req=500

E qn
V a r

BS IM3_Model

AMI06N MO S

BS IM3_Model

AMI06PMO S

BS IM4_Model

BS IM4M2

BS IM4_Model

BS IM4M1

P_1Tone

PO R T1

F req=my F req MH z

P=pola r( dbmtow( my Pow) ,0)

Z=50 O hm
N um=1

D C _Bloc k

D C _Bloc k 1

D C _F eed

D C _F eed1

R

R 2

R =10 k O hm

C
C probe

BS IM4_PMO S

MO S F E T9

Model=BS IM4M1

BS IM4_N MO S

MO S F E T8

Model=BS IM4M2

V_D C

S R C 1

Vdc =4.0 V

L

L 2

R =

L =5 nH

I_Probe
I_Probe4

Linear Parasitics

ESD (BSIM4) Inverter (BSIM3) Output Buffer (BSIM3)

Scope Probe

Figure 3.6: A complete schematic created with ADS software. The BSIM 4 model is included as well as the input
parasitic model. The BSIM SPICE parameters are extracted from test results provided from the foundry.

62



Another comparison between experimental and simulation results is the rise of

supply current when there is a chaotic oscillation. There are noticeable agreements

between mean supply currents and RF power onsets of chaos bifurcation. Fig. 3.7

shows time-averaged supply currents for a normal regime and a chaotic regime. In

both the experimental and simulation results, the supply current starts to increase

above a certain RF power. A clear distinction between two cases is that a mean

supply current in the chaotic regime increases higher than the peak current in Fig.

2.5, whereas the mean current in the normal regime is kept within the peak current

in Fig. 2.5.

A disagreement is noticeable in the high RF power region of the chaotic case.

This is because the NQS effect of the PN junction is not correctly modeled in

BSIM4. The NQS effect of channel charging and discharging time of MOSFET

is correctly modeled in BSIM4, but the NQS effect in the PN-junction inside a

MOSFET is not. We still require further investigations on the mismatching between

the simulation and the measured. However, we are able to predict the onset of

chaotic oscillation, and this is very important if one wants to build a system resistant

to chaotic oscillation.

3.3 Ordinary Differential Equations : Numerical Modeling

3.3.1 Nonlinear Sub-Functions in ODEs

Traditionally, ordinary differential equations (ODEs) are important tools to

describe chaotic dynamics in a circuit. Setting up an ODE model allows one to
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Figure 3.7: Comparison of experimental and simulation results of time-
averaged DC supply current as RF power is varied for input drive fre-
quency of (a) 100 MHz (Linear regime) and (b) 500 MHz (NQS regime).
The simulation accounts for the BSIM4 NQS feature and reflective
impedance. Notice the jumps at 7 dBm appears both in experiment
and simulation. Supply current never exceeds DC peak current 3.5 mA
(dotted line) for (a) but supply current exceeds DC peak current as it
enters the chaotic region in (b). Such comparison can also be made for
Fig. 2.12, in terms of RF power onset of chaotic oscillation.
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examine the sensitivity of the output signal to small changes in initial conditions,

via Lyapunov exponents. In addition, to characterize the deterministic of the signal,

setting up a predictable model is a good practice. In general, for N first-order

autonomous ODEs, N has to be greater than or equal to three in order for chaos to

be possible [42]. The model may not reflect the exact design of the actual circuit, but

the basic nonlinearities discussed in Section 2.3 are included in order to represent

the source of chaotic oscillation. The purpose of the mathematical model is to prove

the presence of chaotic oscillation in this dynamical system.

Here, we simplify the circuits above into Fig. 3.8, which includes the basic

elements of the nonlinearities, and write down the circuit equations based on nodal

analysis and charge analysis. The global parameters are power supply voltage, fixed

at 4 V, and parasitic inductance L1 and L2. There are four state variables, including

V1, VL, IL1, and IL2. The flowchart in Fig. 3.9 explains the general algorithm of the

numerical modeling.

The nonlinear equations for these nonlinear functions, such as nonlinear ca-

pacitance of diodes, rectification of AC signals, short current of the CMOS inverter,

and dynamic current of ESD circuit, are all included in building these numerical

equations. First, the nonlinear transfer function of a CMOS inverter is described by

IINV =
2IMAX

1 + exp( (VIN−1.5)
2

α
)
, (3.3)

where IMAX and α are fitting parameters. Second, the nonlinear dynamics of ESD

switching is described by the sum of the static diode current and the dynamics
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Figure 3.8: (a) Simplified circuit diagram of a CMOS inverter coupled
with ESD circuits for numerical modeling. L1,2 is an equivalent parasitic
impedance around 5 nH. (b) Dynamics of ESD protection circuit for
gcPMOS and ggNMOS.

current due to nonlinear capacitances as shown in Fig. 3.8(b).

IP,N = IP0,N0 + CP,N ·
dV

dt
(3.4)

The nonlinear capacitances CP,N are measured using a quasi-static technique, pro-

vided by a semiconductor parameter analyzer [46], and used a mathematical fitting

method to illustrate the nonlinearity as (3.5),

CP,N =


C0 · exp(V/β) V > 0

C0 V < 0.

(3.5)

where C0 and β are fitting parameters. Then, the model is able to capture the

rectification of the AC signal due to the ESD diode. The mathematical derivation
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Figure 3.9: Flowchart for numerical modeling. The system of ODE is
solved using 4th order Runge-Kutta method with the nonlinear source
listed, such as nonlinear diode equations, nonlinear transconductance of
the inverter, and nonlinear ESD diode capacitance.

of this rectification is validated in numerous papers [34]. However, we did not

include the DC bias shift effect due to a NQS nature of PN-junction diodes here,

also discussed in Chapter 2. In the an actual circuit, DC rectified voltage changes

with the frequency of the input RF signal.

To write down the ODE, the state variables are first defined as V1, VL, IL1,

IL2, QP , and QN . Notice that QP and QN are eliminated during the later part of

derivations, thus the problem becomes a first-order system of four coupled ODEs.

To begin, the charges on one of the nonlinear ESD capacitances are described

as,
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QP = CP · (V1 − VL), (3.6)

where QP is a charge across the nonlinear capacitance CP , and V1 and VL are the

voltages at the input and power source, respectively. Taking time derivatives on

both sides and using the chain rule,

dQP

dt
=
dCP
dt
· (V1 − VL) + CP ·

d(V1 − VL)

dt
(3.7)

=
dCP

d(V1 − VL)
· d(V1 − VL)

dt
· (V1 − VL) + CP ·

d(V1 − VL)

dt
. (3.8)

Thus, the dynamic part of IP becomes

I ′P = [CP +
dCP

d(V1 − VL)
(V1 − VL)] · (dV1

dt
− dVL

dt
). (3.9)

Additionally, the charges on the bottom nonlinear ESD diode capacitance are writ-

ten as

QN = CN · (V1 − 0), (3.10)

where QN is a charge across the nonlinear capacitance CN . Again, taking time

derivatives on both sides and using a chain rule.

dQN

dt
= CN ·

dV1
dt

+
dCN
dt
· V1 (3.11)

= CN ·
dV1
dt

+
dCN
dV1

· dV1
dt
· V1. (3.12)

Thus, the dynamic part of IN becomes

I ′N =
dV1
dt
· (CN +

dCN
dV1

· V1). (3.13)
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As mentioned earlier, the total ESD diode current IP,N becomes a sum of the static

diode current IP0,N0 and the dynamic current I ′N,P

IP,N = IP0,N0 + I ′P,N , (3.14)

where a static diode current follows

IP0,N0(V ) = Is(e
(V/VT ) − 1). (3.15)

Then, (3.13) can be converted to

dV1
dt

=
IN

CN + dCN

dV1
· V1

. (3.16)

After substituting (3.16) into (3.9), (3.9) becomes,

dVL
dt

=
IN

CN + dCN

dV1
· V1
− IP

CP + dCP

d(V1−VL)
· (V1 − VL)

. (3.17)

Using node equations (3.18) and (3.19), (3.16) and (3.17) can be further sim-

plified to (3.20) and (3.21).

IP + IL2 = IINV (3.18)

IL1 = IP + IN (3.19)

dV1
dt

=
IL1 − IINV + IL2

CN + dCN

dV1
· V1

(3.20)
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dVL
dt

=
IL1 − IINV − IL2
CN + dCN

dV1
· V1

− IINV − IL2
CP + dCP

d(V1−VL)
· (V1 − VL)

(3.21)

Lastly, the two current equations are

dIL1
dt

=
1

L1

(VIN − V1) (3.22)

dIL2
dt

=
1

L2

(VDD − VL). (3.23)

3.3.2 Simulation Results

(3.20), (3.21), (3.22), and (3.23) give us a system of four ODEs that can be

numerically solved by the fourth-order Runge-Kutta method (RK4). MATLAB

contains a built-in function called ODE45, to solve ODEs, with the RK4 method.

We plot for the load voltage (VL) in the time domain in Fig. 3.10 (a) and (c). This

shows a clear distinction between periodic and chaotic signals. Fig. 3.10 (b) and (d)

show the delay phase space diagrams, correspondingly. In Fig. 3.10(b), the phase

space diagram evolves around a fixed point, but in Fig. 3.10(d), a chaotic attractor

is shown.

To observe changes in the circuit’s dynamics, we plot the spectrogram of output

voltages as the input RF power varies in Fig. 3.11. We observe the broadband

spectrum at the region around 11 dBm. We can make a direct comparison with

the results shown in Fig. 2.12(b). Both spectrogram show broadband and compex

spectrums. However, there is a disagreement in two parts. First, in Fig. 3.11,

the circuit exhibits the broadband spectrum after the RF power becomes 11 dBm,
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Figure 3.10: (a) Time evolutions of load voltage VL (b) Delay phase
space diagram, when the circuit is excited by the input RF signals with
the frequency of 500MHz and RF power of 7 dBm. (c) Time evolutions
of load voltage VL (d) Delay phase space diagram, when the circuit is
excited by the input RF signals with the frequency of 500MHz and RF
power of 13 dBm.

71



S [V
L
] [dB]

Figure 3.11: Numerical results of spectrogram of load voltage, when the
circuit is excited by input RF signal with a frequency of 500 MHz as RF
power is varied.

whereas the experimental result shows the onset around 7 dBm. Second, the exact

circuit dynamics do not match between the time domain signals.

3.3.3 Calculation of Lyapunov Exponents

Another way to verify the existence of chaotic oscillation is to check whether

nearby trajectories separate exponentially fast, at least while the distance between

them is small [47, 43]. The hypothesis we want to check is whether the average

distance (δ) between trajectories (j) obeys (3.24) after i discrete time steps. Slopes

of logarithmic distance indicate the Lyapunov exponents (LE) after numerically
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computing several nearby trajectories with small deviations in initial conditions.

Positive LEs mean the signals are diverging from each other, which is a chaotic

oscillation. Negative LEs mean that the signals are converging, and a zero LE

indicates that the system is in a steady state mode. The largest Lyapunov exponent

(λmax) is defined by (3.26) using a least-square fit method, averaged over many

nearby trajectories. Fig. 3.12 shows the the calculation of the largest LEs when

the circuit is driven by an input RF signal with a frequency of 500 MHz and a RF

power of 11 dBm.

δj(i) = Cj · exp(λ1 · (i∆t)) (3.24)

ln(δj(i)) = ln(Cj) + (λ1 · (i∆t)) (3.25)

λmax = lim
δ→0

〈
∂ ln δ

∂t

〉
j

(3.26)

3.4 Summary

We developed a mathematical model for the CMOS inverter, driven under

microwave excitation. This mathematical model is developed not to compare with

the experimental results, but to prove mathematically that chaotic oscillation occurs

in a simple CMOS digital circuit under such circumstance. Although this model is

only a behavior model, it is valid because it includes the basic nonlinear dynamics

discussed in the last chapter. This ODE model is used in computing the chaotic

73



0 50 100 150 200
1

1.5

2

2.5

Time Steps

ln
(δ

(t
))

f
IN

=500MHz,  P
IN

= 11 dBm

λ
max

=0.108 [s-1]
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indicate chaotic dynamics.

dynamics, especially the largest Lyapunov exponents. In addition to a mathematical

model, we develop a compact model based on transistors. In this compact modeling,

we include the BSIM transistor model, and the linear parasitic input impedance at

the input of microwave signal injection. From this compact modeling, we can predict

the RF amplitude at which the circuit enters the chaotic region.
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Chapter 4

Design of On-Chip CMOS Boolean Chaotic Oscillator

4.1 Overview

In Chapters 2 and 3, we discussed chaotic oscillation as a means of upset in

the CMOS integrated circuit (IC). To secure stability of CMOS ICs under electro-

magnetic interference, it is important to understand the circuit dynamics generating

chaotic oscillation. Chaotic oscillation is detrimental to circuit stability, and may

lead to a temporary reset or freezing of the circuit. On the other hand, chaotic oscil-

lation in CMOS ICs has expanded its use in various applications, one being random

number generation. More details on the random number generator is introduced

in next chapter, and here, we would like to focus on new mechanism of generating

chaos, Boolean Chaos, and its implementation using CMOS technology.

Among many sources of generating chaotic oscillators, Boolean chaos [25] is

a phenomenon in an autonomous network which shows a high dimensional chaotic

oscillation, exponential sensitivity to initial conditions, and has a broadband power

spectrum. This unique behavior was first described by a group of mathematicians,

using a Boolean delay equation [30]. The circuit node includes Boolean-like state

transitions with a fast transition time and a feedback loop with incommensurate de-

lay inputs that lead to Boolean chaotic oscillation. Another advantage we envision in

this Boolean chaotic oscillator is that an integrated circuit (IC) can be implemented
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with an all transistor-based circuit, which is more compatible to a system-on-chip

solution for cryptographic application, compared to other previously developed IC

chaotic oscillators.

In Chapter 4 and 5, we report on a random number generator whose ran-

domness originates from a Boolean chaotic oscillator, designed and fabricated as an

integrated circuit. According to numerical analysis of the Boolean delay equation, a

single node network generates chaotic oscillation when two delay inputs are incom-

mensurate numbers and transition time is fast. To test this hypothesis physically, a

discrete Boolean chaotic oscillator is implemented. Using CMOS 0.5 µm process, a

CMOS Boolean chaotic oscillator is built, which consists of a core chaotic oscillator

and a source follower buffer. Chaotic dynamics are verified using time and frequency

domain analysis, and maximum Lyapunov exponents are calculated. The quality of

the measured bit sequences is verified for a feasible randomness source, using NIST

standard statistical tests after subsequent post-processings.

Our approach in building this RNG IC is first to test the mathematical hy-

pothesis that chaotic oscillation occurs as described by the Boolean delay equation

via numerical modeling. Then, we build a prototype circuit to test the nature of the

Boolean chaotic oscillator, and then we design this Boolean chaotic oscillator using

integrated circuit technology.

In Section 4.2, we focus on the numerical analysis of Boolean chaos, identifying

the mathematical conditions for which chaotic oscillation is generated.

In Section 4.3, we test our hypothesis using discrete parts.

In Section 4.4, we design the CMOS Boolean chaotic oscillator with the con-

76



Figure 4.1: Example of Boolean Chaos. Two delays (τ1 and τ2) are
inputs of XOR with response time (τd).

ditions tested in previous sections and analog circuit design.

4.2 Numerical Analysis of Boolean Chaos

The mathematical description from the Boolean delay equation [30] has led us

to believe that chaotic oscillation is generated from an autonomous Boolean network,

with n state nodes in (4.1).

xn(t) = fn[t, x1(t− τn1), x2(t− τn2), . . . , xn(t− τnn)], (4.1)

where τnn is a delay time from nth node to nth node, xn(t) is a Boolean logic state

at nth node at time t, and fn is a logic function for nth node.

We have numerically tested this hypothesis with the simple Boolean network in

Fig. 4.1. In this single-state network, there are two different delay inputs (τ1, τ2) of

exclusive-OR (XOR) (transitional delay, τd) whose output is fed back as delay inputs

again. Fig. 4.2 illustrates chaotic oscillation in numerical analysis. We have written

simple numerical codes to test the feasibility of generating chaotic oscillation from

77



the Boolean delay equation [48]. To calculate a trajectory, we construct a queue of

the discrete times tm, to keep track of the transitions. If t1 is the earliest time in

the queue it has processed, this generates two possible transitions at times (t1 + τ1)

and (t1 + τ2). These transition candidates are then compared to every transition in

the queue to see if there are any collisions. If any transition tk has the same value as

one candidate, that specific transition is removed from the queue and the candidate

is discarded. We call this phenomenon a collision between tk and the tentative

transition (t1 + τ1) or (t1 + τ2). If one of the candidates does not collide with any

transitions in the queue, the candidate is added to the queue, and the transition t1

from which it originated is saved on a record of transitions that actually occur and

it is removed from the processing queue. We take the next value from the queue

and repeat the process until the desired time or number of transitions is reached.

In Fig. 4.2(a), we observe the chaotic oscillation that occurs when two de-

lay inputs have incommensurate numbers, and transition delay of XOR is zero.

However, in Fig. 4.2(b) and (c), a periodic oscillation occurs when two delays are

commensurate, and when the transition delay is relatively slow, respectively. For an

irrational pair of delays, assuming an ideal state transition time, there are no states

that occur at the same time. However, as the transition time of the state increases,

a short-pulse rejection [49] plays a role in preventing pulses shorter than a minimum

duration from passing through the gate, thus inhibiting a chaotic oscillation. This

method of numerical analysis keeps track of the transitions, and also incorporates

the short-pulse rejection.
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Figure 4.2: Numerical results from XOR (a) when τ1 and τ2 is incom-
mensurate, and τd is 0 (Boolean chaos), (b) when τ1 and τ2 is incommen-
surate, and τd is 0.1 (period 4), and (c) when τ1 and τ2 is commensurate,
and τd is 0 (period 1). Boolean chaotic oscillation is observed when state
transition occurs with no response time and two incommensurate delays
inputs. When two delays are commensurate and response time of XOR
is large, periodic transition is observed.
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4.3 Discrete Boolean Chaotic Oscillator

To test mathematical hypothesis developed in previous numerical simulations,

we build a Boolean chaotic oscillator using commercial logic gates. Fig. 4.3 depicts a

schematic diagram and a picture of the Boolean chaotic oscillator on a printed circuit

board. A ring oscillator and cascaded inverters play an important role in generating

incommensurate inputs and XOR has a fast response time. We use the SN74AUC-

series Texas Instrument logic gates whose propagation delay time is around 2 ns (at

CL=30pF). The output is measured using a high-sampling rate oscilloscope at the

output of XOR.

To characterize the chaotic dynamics in this circuit, we analyze the results in

various ways, including time domain analysis, frequency spectrum, and calculating

maximum Lyapunov exponents (LE) (λmax). In Fig. 4.4, we plot the time evolutions

of output voltage for both periodic and chaotic regions, and the frequency spectrum.

The observed aperiodicity and broad spectrum are dominant features in a chaotic

oscillator.

Next, to verify the existence of chaotic oscillation, we compute the maximum

Lyapunov exponents for the entire dynamics domain. The Lyapunov exponent de-

termines how sensitive the signal is to initial conditions, and it is a good way to

measure chaotic dynamics. The hypothesis we check is whether the average distance

(δ) between trajectories (j) obeys (4.2) after i discrete time steps. Furthermore,

maximum Lyapunov exponents (LE) are calculated after taking slopes of logarith-

mic distance, following the algorithm in [43]. The maximum Lyapunov exponent
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Figure 4.3: (a) Diagram of circuit which generates Boolean chaotic os-
cillation. This circuit consists of an XOR(τd), a ring oscillator(τ1), and a
delay(τ2) (b) Picture of the circuit implemented on printed circuit board
(PCB), consisting of commercial logic gates.

(λmax) is defined by (4.4) using a least-square fit method, averaged over many nearby

trajectories. While a traditional means of calculating LE involves the use of differ-

ential equations, here, to calculate average distance between trajectory from the

experimental result, we find the nearest neighbor distance, δj(i), from reference tra-

jectories to reconstructed trajectories. This reconstructed trajectory is formed by
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Figure 4.4: (a) Time evolution of periodic oscillations when the circuit
is biased at 3V. (b) Time evolution of chaotic oscillations when the cir-
cuit is biased at 4V. (c) Frequency spectrum of output voltage signal
with varying VDD. A broad spectrum with numerous subharmonics is
observed, reaching from DC to 500 MHz.

carefully choosing the delay dimension [43]. Fig. 4.5(a) illustrates the two different

cases for the periodic and chaotic oscillation. The slopes of Fig. 4.5(a) indicate

strong positive LEs for the chaotic dynamics and near-zero LEs for the periodic
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Figure 4.5: (a) Average logarithmic distance between trajectories when
VDD is 4.8V (top) and 2.3V (bottom). Top figure shows a positive slope
while the bottom has a slope close to zero. (b) Maximum Lyapunov ex-
ponents (λmax) with varying VDD as the measured data for each VDD are
calculated for λmax. After VDD reaches 3.3V, the circuit enters chaotic
region, resulting in positive λmax.
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dynamics. The entire LE spectrum illustrates the trend of chaotic dynamics as we

take VDD as a bifurcation parameter.

δj(i) = Cj · exp(λ1 · (i∆t)) (4.2)

ln(δj(i)) = ln(Cj) + (λ1 · (i∆t)) (4.3)

λmax = lim
δ→0

〈
∂ ln δ

∂t

〉
j

(4.4)

4.4 IC realization of the CMOS Boolean Chaotic Oscillator

4.4.1 Circuit Design

Based on the results in the previous section, we design a CMOS Boolean

chaotic oscillator using the On-Semiconductor 0.5µm process. This circuit consists

of two parts, namely the chaotic oscillator and the output buffer. Fig. 4.6(a) shows

a microphotograph of the circuit, and Fig. 4.6(b) and (c) show circuit schematics

of the core chaotic oscillator and output buffer, respectively. The number of stages

and dimensions of CMOS pairs in the oscillator are carefully chosen to follow the

algorithm of Boolean chaos developed in the previous sections. We perform SPICE

simulation with proper device models to predict the output signal. As a result, the

core chaotic oscillator consists of 5 stages of ring oscillators, 1 push-pull type XOR

circuit, and 27 stages of delay inverter chains.
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Figure 4.6: (a) Microphotograph of our CMOS Boolean chaotic oscilla-
tor, consisting of (b) a chaotic oscillator and (c) a source follower type
buffer. The chaotic oscillator includes a ring oscillator, cascaded inverter
chains, and an XOR circuit. Numbers of the stages of the ring oscillator
and cascaded inverter chains are adjusted after numerical simulation of
Boolean chaos and transistor-based simulation. For each stage of com-
mon drain amplifiers (M3, M8, and M9), currents are either sourced or
sinked.
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To drive a load directly, a unity gain output buffer is designed. In general,

source followers are used as the output buffers whose output impedance is lowered.

We design three stages of source follower buffer with near-unity gain and the band-

width close to 300MHz. The large signal gain is derived from multiplying the voltage

gain of each stage of source follower. The large signal gain of the first stage source

follower is

Av1 =
((1/gmb)||ro3||ro4)

((1/gmb)||ro3||ro4) + 1/gm3

, (4.5)

where gmb is the body-transconductance, gm is the gain-transconductance, and ro is

the output resistance. The second stage of PMOS source follower is

Av2 =
(ro7||ro8)

(ro7||ro8) + 1/gm8

. (4.6)

The last stage of the source follower is identical to (4.5), but the amplifier size is

different.

Av3 =
((1/gmb)||ro9||ro10)

((1/gmb)||ro9||ro10) + 1/gm9

(4.7)

Overall the large signal voltage gain is close to 1,

Av = Av1 · Av2 · Av3. (4.8)

However, unity gain of the buffer falls apart as transistors enter triode regions.

The dominant pole in the frequency response is approximately [50],
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ωp1 ≈
gm

CL + CGS
(4.9)

where CL is the loading capacitance, and CGS is the small signal capacitance between

source and gate node. Therefore, the bandwidth of this buffer is determined by

increasing gm,

gm =

√
2IDknW

L
(4.10)

which in turn, is determined by large drive current, ID.

4.4.2 Results

First, DC and RF responses of the output buffer are measured and simulated.

This buffer has a wide dynamic range of unity gain, in Fig. 4.7(a), and a 3dB band-

width of 300 MHz, in Fig. 4.7(b). This output buffer allows the chaotic oscillation

generated in the previous stage to be seen at the load without any distortion, and

is capable of driving the capacitive load.

In Fig. 4.8, we also measure time evolution of output signal as VDD varies. We

subsequently Fourier-transformed to observe the frequency spectrum. This chaotic

oscillator is highly aperiodic and a broad frequency spectrum is observed, reaching

up to 300 MHz.

The Lyapunov exponent determines how sensitive the signal is to initial con-

ditions, and it is a good way to measure chaotic dynamics. The hypothesis we

check is whether the average distance (δ) between trajectories (j) obeys (4.11) after
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Figure 4.7: (a) Transfer characteristics of the buffer for measurement
and simulation. (b) Bode plot of simulated output voltage of buffer.
This buffer is capable of 3dB cut-off frequency of 300 MHz and has
wide input ranges for unity gain. The cutoff frequency of the buffer is
determined from the amount of current flowing through amplifiers and
loading capacitance.
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Figure 4.8: (a) Time evolution of periodic oscillation when the circuit is
biased at 3V. (b) Time evolution of chaotic oscillation when the circuit
is biased at 4.2V. (c) Frequency spectrum of output voltage signal with
varying VDD. Broad spectrum with numerous subharmonics, reaching
from DC to 300 MHz, is observed.
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i discrete time steps. Furthermore, maximum Lyapunov exponents (LE) are cal-

culated after taking slopes of logarithmic distance, following the algorithm in [43].

The maximum Lyapunov exponent (λmax) is defined by (4.13) using a least-square

fit method, averaged over many nearby trajectories. While a traditional means of

calculating LE involves the use of differential equations, here, to calculate average

distance between trajectory from the experimental result, we find the nearest neigh-

bor distance, δj(i), from reference trajectories to reconstructed trajectories. This

reconstructed trajectory is formed by carefully choosing the delay dimension [43].

δj(i) = Cj · exp(λ1 · (i∆t)) (4.11)

ln(δj(i)) = ln(Cj) + (λ1 · (i∆t)) (4.12)

λmax = lim
δ→0

〈
∂ ln δ

∂t

〉
j

(4.13)

In Fig. 4.9(a), we observe an initial positive slope for the chaotic dynamics and

a zero slope for the periodic dynamics, respectively. Comparing with the frequency

spectrum in Fig. 4.8(c), the same trend of chaotic dynamics is observed, in the

Lyapunov spectrum in Fig. 4.9(b) as VDD is varied accordingly. The region with

the positive LEs corresponds with the region with the broad spectrum which shows

chaotic dynamics. Periodic output exhibits discrete harmonics in the frequency

spectrum, and the maximum LE is close to zero.
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Figure 4.9: (a) Average logarithmic distance between trajectories when
VDD is 4.2V (top) and 2.2V (bottom). Top figure shows a positive slope
while the bottom has a slope close to zero. (b) Maximum Lyapunov ex-
ponents (λmax) with varying VDD as the measured data for each VDD are
calculated for λmax. After VDD reaches 3.3V, the circuit enters chaotic
region, resulting positive λmax. An inset in (b) indicates near-zero λmax
for periodic oscillation.
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4.5 Summary

We demonstrate CMOS Boolean chaotic oscillation, whose chaotic dynamics

are described by a Boolean delay equation. This equation indicates that chaotic

oscillation is possible when we have incommensurate delay inputs and a relatively

small transition time in autonomous networks. This Boolean chaotic oscillator pro-

duces a chaotic oscillation output, whose bandwidth extends from DC to 300MHz.

Its chaotic dynamics are tested through time evolution, frequency spectrum, and

maximum Lyapunov spectrum of output signals. This circuit is the first integrated

circuit implementation of the Boolean chaotic oscillator, which can be widely used

in building a CMOS integrated circuit for a true random number generator. In

the next chapter, we will study the feasibility of this circuit for random number

generation.
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Chapter 5

Cryptographic Physical Random Number Generator

5.1 Overview

We report on a random number generator whose randomness originates from a

Boolean chaotic oscillator, designed and fabricated as an integrated circuit in Chap-

ter 4. Random number generators (RNGs) are important for a variety of applica-

tions, including encryption, random key generation, and Monte-Carlo simulations

[51]. Successful random number generation is crucial in improving the results and

security of these applications.

A true random number generator needs a naturally occuring source of ran-

domness. The potential origin of randomness in this physical true RNGs includes

non-deterministic [52, 53], deterministic sources [54, 55], as well as numerical pseudo-

RNGs. Examples of non-deterministic sources in RNGs are thermal noise and stray

electromagnetic waves. These sources are highly sensitive to the semiconductor

manufacturing process, and thus are not reliable in generating outputs. The noise

must be amplified to a level where it can be accurately converted as digital bits.

There are few reports on the implementation of RNGs based on the noise source

[56, 53]. However, it is hard to implement as a CMOS IC because this work re-

quires an adequate shielding from power supply and substrate signals. On the other

hand, examples of deterministic sources include the frequency instability of a free

93



running oscillator, and a chaotic oscillator. They can be built on integrated circuits

and their outputs are kept shielded from process variations and test conditions,

compared to non-deterministic sources. In addition, this type of RNGs requires no

post-processing steps before analog-to-digital (ADC) conversions. Last, numerical

pseudo-RNGs can also be candidates in building true RNGs. Designing a RNG with

a numerical pseudo-RNG is even more difficult process than doing with a hardware,

and requires a complex algorithm to generate RNGs [51]. Most of the numerical

pseudo-RNGs are built with the very large scale device (VLSI) device like a field-

programmable gate array (FPGA). Table 5.1 compares the different RNGs with the

different sources. Here, we exploit the randomness from chaotic dynamics of the

Boolean chaotic oscillator.

It is almost impossible to give mathematical proof that a signal is truly ran-

dom. Among many tests, a statistical test from National Institute of Standards and

Technology (NIST) is the most trusted in the field. [51]. The test describes the

probabilistic weakness the generator may have. This is accomplished by taking ana-

log output, and converting to digital signal, and subjecting it to various statistical

tests.

We report here on random number generation with our IC Boolean chaotic

oscillator, using only minimum post-processing techniques such as threshold detec-

tion and bit generation. These bits pass through the NIST statistical test [13], a

standard way to validate the properties of RNG for cryptographic application.

In Section 5.2, we focus on the post-processing methods of digitizing the out-

puts of the CMOS Boolean chaotic oscillator.
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Table 5.1: Comparison of different random number generator sources

Source Thermal Noise Chaotic Oscillator Numerical

Pseudo-RNG

CMOS compatibility Bad Good PC, FPGA

Reliability Bad Very Good Very Good

Randomness Good Good Very Good

Post-Processing ∗ Noise Amplification Not Required Complex

No. of Transistors <100 <100 >1 million

References [56, 53] [55, 57], this work [51]

*excluding analog-to-digital conversion (ADC).

In Section 5.3, we perform various statistical tests of the validity of the random

number generator, including the NIST statistical test.

5.2 Random Number Generation

A deterministic type of random number generator uses chaotic oscillation as a

source to produce true randomness in RNGs. Fig. 5.1 shows a scheme to generate

digitized random bits from the circuit developed, in Chapter 4. Data acquired from

the oscilloscope passes through the functions in the software. Most random sources

may suffer, in that the output bits may be biased or correlated. Among various

95



techniques for generating truly random bit sequences, such de-skewing is necessary

as shown Fig. 5.1. The de-skewing process has two steps.

Figure 5.1: Schematic diagram of random number generation using
CMOS boolean chaotic oscillator.

First, analog signals from the CMOS Boolean chaotic oscillator directly pass

through the threshold function with threshold inputs, C1 and C2. This block is

described by

x1(x(t)) =


0 if x(t) > C1

1 if x(t) ≤ C1

(5.1)

x2(x(t)) =


0 if x(t) > C2

1 if x(t) ≤ C2.

(5.2)

This threshold circuit can be achieved using the circuit shown below in Fig. 5.2.

Next, a bit is generated when the signal passes the subspace S1 region or the subspace

S2 region through subspace S0. This bit generation is described by

b(x1, x2) =


0 if x1=0, x2=0 ↑ 1

1 if x2=1, x1=0 ↑ 1.

(5.3)
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Figure 5.2: Diagram of circuit for generating binary sequences.

This post-processing is equivalent to dividing the entire phase space of chaotic

dynamics into the subspaces, S0, S1, and S2, and then keeping track of transitions of

one subspace to another. A measure of entropy(H) with respect to threshold values

is tested to give the most uncertainty. Fig. 5.3 shows that H achieves its maximum

when C1 and C2 are at 1.4 and 1.2, respectively.

H = −
n∑
i=1

p(xi)ln(p(xi)) (5.4)

After the final de-skewing process, the bit sequence generated is shown in Fig.

5.4. In addition, Fig 5.5 plots the greyscale image of output sequences. The output

array is converted to the square matrix, and bit 1 is represented by a black pixel

whereas bit 0 is represented by a white pixel. Fig 5.5 shows randomness in the given

output.
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Figure 5.4: Bit sequence generated after post-processing. The closed
circles represent the actual bits.
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(a)

(b)

Figure 5.5: (a) Grayscale plot for output bit sequence after converting
to square matrix. (b) Inset of (a). Black pixels represent 1, and white
pixels respresent 0.

5.3 Statistical Tests

Statistical hypothesis testing is a method of making decisions using data. A

statistical test is performed to test a specific null hypothesis (H0). The null hypoth-
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esis in this case is that the sequence being tested is random. For each applied test,

often developed to test the randomness of a sequences, a decision is made whether

to accept or reject the null hypothesis. Under the null hypothesis, such a test gen-

erates a distribution of test values. During the test, the test value is compared to

a critical value, computed from a given theoretical reference distribution. However,

there are two errors associated this statistical hypothesis testing. Table 5.1 explains

the type of errors.

Table 5.2: Type I and II error in Statistical hypothesis testing

SITUATION
CONCLUSION

Accept H0 Reject H0

Data is random (H0 is true) No error Type I error

Data is not random (H0 is false) Type II error No error

If the test statistic value is S and the critical value is t, then a Type I error

is defined by P (S > t | H0 is true)=P (reject H0 | H0 is true), and describes a

tendency to conclude it is not random while the sequence is in fact random. A Type

II error is also defined by P (S < t | H0 is false)=P (accept H0 | H0 is false),

and describes a tendency to conclude it is random while the sequence is in fact not

random. The test statistics calculates a P−value, a strength of the evidence against

the null hypothesis. If the P − value is 1, then the bit sequence is truly random.

A P − value of 0 indicates the sequences is non-random. Here, a significance level

α is chosen. Therefore, if the P − value is greater than α, the sequence is random,
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with a confidence level of α. On the other hand, if the P − value is less than α, the

sequence is not random, with a confidence level of α. For example, for a P − value

greater than 0.001 and α of 0.001, a sequence would be random with a confidence

of 99.9 percent.

We evaluate the statistical properties of the random process using the NIST

statistical test suite. The NIST test suite contains 15 functions of statistical tests.

The interpretation of test results examines two features; the distribution of p-values

to the check the uniformity, noted as P -value, and the proportion of sequences that

pass a statistical test. A thousand sequences of a 1 Mbit sample pass through each

test in the NIST test suite and then return a single P -value, and furthermore, from

1000 individual p-values, the number of test that satisfies p > α is computed.

For a truly random sequence, p-values must exceed the level of significance

α chosen. The P -value, should be larger than 0.0001 and the proportion number

should also be greater than 0.98 for a given number of sequence and level of sig-

nificance. Table 5.2 summaries the results of NIST statistical tests for the level of

significance 0.01.

5.4 Summary

In summary, a random number generator using chaotic oscillator has many

technical advantages over other random number generators based on in-deterministic

sources. Moreover, Boolean chaotic oscillator can be easily built using a current

CMOS technology. With complete design summary in the previous chapter, here,
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we described the post-processing technique to convert the analog output to digital

outputs. We carefully choose test parameters of post-processing as we monitor the

entropy functions of every test parameter. Then, we use the NIST statistical test

to verify its feasibility as a random number generation source.
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Table 5.3: Results of NIST statistical test α=0.01

Statistical Test P -value proportion Result

Frequency 0.6329 0.9823 success

Block frequency 0.8905 0.9870 success

Cumulative sums∗ 0.8846 0.9820 success

Runs 0.8949 0.9910 success

Longest runs 0.6308 0.9880 success

Ranks 0.3976 0.9900 success

FFT 0.2812 0.9850 success

Nonoverlapping templates∗ 0.0140 0.9830 success

Overlapping templates 0.6931 0.9890 success

Universal 0.1503 0.9920 success

Approximate entropy 0.2467 0.9910 success

Random excursion∗ 0.022 0.9803 success

Random excursion var∗ 0.0817 0.9803 success

Serial∗ 0.3085 0.9930 success

Linear complexity 0.1756 0.9920 success

*The worst case number is chosen for the multiple sub-tests.
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Chapter 6

Conclusions and Future Research

6.1 Conclusions

The thesis consists of two parts. First, we demonstrate in an experiment and

models that chaotic oscillation is present in standard CMOS integrated circuits when

it is driven under electromagnetic source. Next, we design a CMOS Boolean chaotic

oscillator, a well-suited entropy generator in building a random number generator.

6.1.1 Chaotic Oscillation as HPM effect in CMOS ICs

Chaotic oscillation is a phenomenon with implications for many fields of science

and technology. High power microwave effect is a behavior of CMOS ICs when the

circuit is exposed to intentional and directed high power microwave signals. Besides

some of the reported effects, chaotic oscillation has only been conjectured as an

instability and never been proven.

We have demonstrated chaotic oscillation is present in standard CMOS ICs.

First, we design and fabricate a conventional CMOS digital inverter circuit that

consists of a logic circuit, an output buffer, and an electrostatic discharging protec-

tion circuit. The building blocks used in our test circuit all come from the library of

foundry services. To be able to investigate the chaotic dynamics in standard CMOS

ICs, we have chosen the basic CMOS structures. In a direct RF injection experi-
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ment, we have observed some evidences of existence of strong nonlinear dynamics

in the power frequency spectrum such as broadband spectrum and various kinds

of bifurcations. Next, we have analytically given some nonlinear features occurred

from this HPM injection circumstance. Important nonlinearities are the followings.

Large RF signals are rectified from junction diodes of ESD protection circuits, and

this rectification enters a non-quasi static regime as the period of RF signal becomes

comparable to the reverse recovery time of the ESD diodes. In addition, a nonlinear

LC current from the parasitic inductances and a nonlinear capacitance of junction

diodes play a role in generating numerous subharmonics. Further, we validated the

presence of chaotic oscillation by computing the positive largest Lyapunov exponents

from numerical models. The presence of chaotic oscillation is validated as we verify

the three aspects in the definition of chaotic signal. Aperiodicity is characterized

by the broadband power spectrum, deterministic nature of the signal is verified by

the setting up the dynamical equations, and further its sensitiveness to the initial

condition is analyzed through computing positive largest Lyapunov exponents.

The importance of this work is that another effect mechanism, chaotic oscil-

lation is discovered in standard CMOS integrated circuits, which long been only

conjectured. Having studied the dynamics of nonlinear features in the circuit, we

can better understand the causes of chaotic oscillation. Due to the general CMOS

circuit we design, this study can also apply to any CMOS digital circuits which

consist of general structures discussed in this thesis. Last, this work is a credit to a

high power microwave community, one can disrupt and force the system to failure,

if the circuit is driven to chaotic oscillation. This work may reflect that the CMOS
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digital circuit is highly vulnerable to chaotic oscillation under high power microwave

excitation.

In summary, our approach towards this topic is that we have experimentally

observed some evidences of chaotic oscillation, and finally numerically validate the

presence of chaotic oscillation in the circuit.

In Chapter 2, we explained the design procedure of CMOS Inverter integrated

circuits and the experiment procedure of RF signals coupling to the designed cir-

cuit. To demonstrate the experimental evidences of chaotic oscillation, we analyzed

the output voltages in time and frequency domains. We analytically discussed the

sources of nonlinearity contributing to the generation of chaotic oscillation.

In Chapter 3, we further showed the presence of chaotic oscillation using the

numerical models. The mathematical model consists of nonlinear functions of the

circuit, and the largest Lyapunov exponents are calculated to show the existence of

chaotic oscillation. We build a transistor-model to predict the RF onset of chaotic

oscillation when the circuit enters the chaotic region. This agrees with the measured

results in Chapter 2.

6.1.2 Chaotic Oscillation in Cryptographic Random Number Gener-

ation

Boolean chaos is a new mechanism for generating chaotic oscillation. Chaotic

oscillation is generated in a network whose transition is highly Boolean and in which

the state nodes are connected with different delays. In cryptographic purposes, a
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random number generator is built from many randomness sources such as thermal

noise, stray electromagnetic waves, and even metastability of the circuit. Chaotic

oscillation is a good candidate for building a randomness source because its signal is

easy to control and deterministic. We designed the CMOS Boolean chaotic oscillator,

and tested it for feasibility as a random number generator. Compared to other

chaotic oscillators, this type of Boolean chaotic oscillator is favored due to the

integration with the CMOS technology. In validating the feasibility of random

number generation, a NIST statistical random number test is generally used.

In Chapter 4, we numerically and experimentally test the hypothesis that the

Boolean delay equation leads to chaotic oscillation. Using CMOS 0.5 µm technology,

we designed a CMOS Boolean chaotic oscillator.

In Chapter 5, using the statistical NIST random number test, we verify the

feasibility of the designed circuit in the random number generator (RNG). Our RNG

has passed all the tests in the NIST statistical test.

6.2 Future Directions

The research presented in this thesis can be considered as a starting point for a

deeper exploration of chaotic oscillation in the CMOS integrated circuit. For future

research, we would like to head into some important directions.

First, we point out the PN junction modeling in the BSIM model. Although

much literature and research has guaranteed the recent version of BSIM to work

up to hundreds of GHz operations, this high frequency modeling only takes care
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of charging and discharging of the channel in MOSFET. For stability under large

signal electromagnetic excitation, the nonlinear dynamics in the PN-junctions are

more important. The PN-junction in the BSIM model is an important contributor

to the generation of chaotic oscillation, but in BSIM, no valid modeling exists. One

way to avoid this problem is to use another version of the DIODE model, but this

needs extra work, namely, converting our ESD protection circuit based on MOSFET

to the correct diode model parameters.

Second, we concluded that the design of the ESD protection circuit is highly

susceptible to electromagnetic interference in generating chaotic oscillation. The

ESD protection circuits we used in the circuit is a generic ESD protection circuits,

provided by the MOSIS foundry. Research should be carried on as to find other

types of ESD protection circuits to reduce this effect. An important area to explore

is the study of ESD protection circuits which are highly compatible with chaotic

oscillation.

Third, the speed of the CMOS design of the Boolean chaotic oscillator is

limited by the technology node, the frequency response of the output buffer, and

a load impedance of oscilloscope. For a high speed random number generator,

we need an output buffer design with higher cutoff frequency response, and small

loading impedance.

108



6.3 Closing Remarks

In closing the work, there is no doubt that chaotic oscillation is a complex

and difficult problem to deal with especially in CMOS integrated circuits. It was

long traditions that electrical engineers have long neglected the importance of the

chaotic oscillation in their electronics. However, when it comes down to HPM effects,

this regime can no longer be neglected. The fundamental work presented here

provides an essential background to people studying the stability of their system

under electromagnetic source, and at the same time, defines chaotic oscillation as a

new effect mechanism under high power microwave coupling into CMOS integrated

circuits. As a result, the presence of chaotic oscillation in standard CMOS integrated

circuit will bring lots of attentions to the researchers looking at the high-order

instability as well as researchers developing such EMI-hardened or HPM-hardened

systems.

In addition, the development of chaotic oscillators has gained lots of attentions

in communications and cryptography. Surely, this work of building random number

generator using CMOS Boolean chaotic oscillator will be another asset for circuit

designers who are developing CMOS ICs using chaotic dynamics, especially in the

fields of random number generations.
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Appendix A

BSIM Parameters

MODEL CMOSN NMOS LEVEL = 49

VERSION = 3.1 TNOM = 27 TOX = 1.38E-8

+XJ = 1.5E-7 NCH = 1.7E17 VTH0 = 0.5931459

+K1 = 0.879253 K2 = -0.0968711 K3 = 22.6428645

+K3B = -9.849049 W0 = 2.636842E-8 NLX = 1E-9

+DVT0W = 0 DVT1W = 0 DVT2W = 0

+DVT0 = 0.6755795 DVT1 = 0.27608 DVT2 = -0.4974617

+U0 = 454.8293133 UA = 1E-13 UB = 1.306857E-18

+UC = 6.003353E-12 VSAT = 2E5 A0 = 0.5426773

+AGS = 0.1060338 B0 = 1.852719E-6 B1 = 5E-6

+KETA = -2.682846E-3 A1 = 0 A2 = 0.3

+RDSW = 856.9792774 PRWG = 0.1467648 PRWB = 0.0170317

+WR = 1 WINT = 2.058331E-7 LINT = 6.416175E-8

+XL = 1E-7 XW = 0 DWG = 2.559387E-10

+DWB = 2.956012E-8 VOFF = 0 NFACTOR = 0

+CIT = 0 CDSC = 2.4E-4 CDSCD = 0

+CDSCB = 0 ETA0 = 1.691727E-3 ETAB = -2.990578E-4

+DSUB = 0.0620642 PCLM = 2.1398211 PDIBLC1 = 1.636689E-4
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+PDIBLC2 = 1.72093E-3 PDIBLCB = 0.0944082 DROUT= 3.292468E-3

+PSCBE1 = 3.840311E8 PSCBE2 = 3.949241E-6 PVAG = 0

+DELTA = 0.01 RSH = 81.6 MOBMOD = 1

+PRT = 0 UTE = -1.5 KT1 = -0.11

+KT1L = 0 KT2 = 0.022 UA1 = 4.31E-9

+UB1 = -7.61E-18 UC1 = -5.6E-11 AT = 3.3E4

+WL = 0 WLN = 1 WW = 0

+WWN = 1 WWL = 0 LL = 0

+LLN = 1 LW = 0 LWN = 1

+LWL = 0 CAPMOD = 2 XPART = 0.5

+CGDO = 1.88E-10 CGSO = 1.88E-10 CGBO = 1E-9

+CJ = 4.189612E-4 PB = 0.8362037 MJ = 0.4268727

+CJSW = 3.511622E-10 PBSW = 0.8 MJSW = 0.2006042

+CJSWG = 1.64E-10 PBSWG = 0.8 MJSWG = 0.2019414

+CF = 0 PVTH0 = 0.0862532 PRDSW = 84.413531

+PK2 = -0.0885087 WKETA = -0.0164054 LKETA = 1.749206E-3
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.MODEL CMOSP PMOS LEVEL = 49

+VERSION = 3.1 TNOM = 27 TOX = 1.38E-8

+XJ = 1.5E-7 NCH = 1.7E17 VTH0 = -0.9152268

+K1 = 0.553472 K2 = 7.871921E-3 K3 = 2.8768851

+K3B = 2.0233456 W0 = 5.780172E-7 NLX = 1.005775E-9

+DVT0W = 0 DVT1W = 0 DVT2W = 0

+DVT0 = 0.4714461 DVT1 = 0.1852157 DVT2 = -0.3

+U0 = 201.3603195 UA = 2.48572E-9 UB = 1.005454E-21

+UC = -1E-10 VSAT = 1.051486E5 A0 = 0.7471706

+AGS = 0.1277893 B0 = 7.349251E-7 B1 = 2.776521E-8

+KETA = -4.865785E-3 A1 = 3.090478E-4 A2 = 0.5651395

+RDSW = 3E3 PRWG = -0.0219617 PRWB = -0.0909377

+WR = 1.01 WINT = 2.212303E-7 LINT = 9.977278E-8

+XL = 1E-7 XW = 0 DWG = -4.82616E-10

+DWB = -1.585E-8 VOFF = -0.0619165 NFACTOR = 0.2482253

+CIT = 0 CDSC = 2.4E-4 CDSCD = 0

+CDSCB = 0 ETA0 = 9.384854E-3 ETAB = -0.2

+DSUB = 1 PCLM = 2.3408026 PDIBLC1 = 0.0767278

+PDIBLC2 = 4.024702E-3 PDIBLCB = -0.0443178 DROUT = 0.2659121

+PSCBE1 = 8E10 PSCBE2 = 8.966681E-8 PVAG = 0.0149502

+DELTA = 0.01 RSH = 105.9 MOBMOD = 1

+PRT = 0 UTE = -1.5 KT1 = -0.11

+KT1L = 0 KT2 = 0.022 UA1 = 4.31E-9
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+UB1 = -7.61E-18 UC1 = -5.6E-11 AT = 3.3E4

+WL = 0 WLN = 1 WW = 0

+WWN = 1 WWL = 0 LL = 0

+LLN = 1 LW = 0 LWN = 1

+LWL = 0 CAPMOD = 2 XPART = 0.5

+CGDO = 2.35E-10 CGSO = 2.35E-10 CGBO = 1E-9

+CJ = 7.015391E-4 PB = 0.8644163 MJ = 0.4849925

+CJSW = 2.448774E-10 PBSW = 0.8 MJSW = 0.2031512

+CJSWG = 6.4E-11 PBSWG = 0.8 MJSWG = 0.2261452

+CF = 0 PVTH0 = 5.98016E-3 PRDSW = 14.8598424

+PK2 = 3.73981E-3 WKETA = 0.0140638 LKETA = -0.0170643
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Appendix B

Code for Numerical Models

We present the MATLAB code for simulating chaotic oscillation in the given

model in Chapter 3. Section B.1 shows main function which uses 4th Runge-Kutta

method to solve the set of the ordinary differential equations. Section B.2 consists of

nonlinear functions, including transconductance of the inverter, static diode current,

nonlinear capacitance,
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B.1 Main Function

function [tset,VL,IL]=inv_ode(dBm) 
% clear all; 
% clc; 

  
x0=[3 0]; 
t_step = 10^-11; 
t_end = 1.5*10^-7; 
tspan = 0.1e-7:t_step:t_end; 

  
global Cjj 
global I_inverter 
global I_diode 
global Vdiode 
global tt 
global VVin 
global VLL 
global Vold 

  
Cjj=[]; 
I_inverter=[]; 
I_diode=[]; 
Vdiode=[]; 
tt=[];  
VVin=[]; 
VLL=[]; 
Vold = 0; 

  
[t,x]=ode23(@example,tspan,x0,[],dBm); 
tset(:,1)=t(:,1); 
VL(:,1)=x(:,1); 
IL(:,1)=x(:,2);   
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function [xprime] = example(t,x,fi,dB) 

  
global Cmp 
global Cmn 
global I_inverter 
global tt 
global VVin 
global VLL 
global V1 
global deri_Cmp 
global deri_Cmn 

  
VDD=3; %V 
L2=2e-9; %H 

  
%% RF input %%% 
dBm=dB; 
omega = 2*pi*fi; 
Vdc = 0; 
vac = sqrt( (10^((dBm/10)-3)) * 50 ); %conversion of dBm to V 
Vin = Vdc +  vac*sin(omega*t) ; 

  

  
%% monitor interior variables %% 
V1(end+1,1)=x(1); 
VLL(end+1,1)=x(2); 
VVin(end+1,1)=Vin; 
tt(end+1,1)=t; 

 
%% Nonlinear elements %% 
Cmp(end+1,1)= Cjp(x(1)-x(2)); 
deri_Cmp(end+1,1)=deri_Cjp(x(1)-x(2)); 
Cmn(end+1,1)= Cjn(x(1)-0); 
deri_Cmn(end+1,1)=deri_Cjn(x(1)-0); 
I_inverter(end+1,1) = Iin(x(1)); 

  
%% ODE %% 
xprime  

=[(x(3)-I_inverter(end)+x(4))/(Cmn(end)+(deri_Cmn(end)*x(1))); 

((x(3)-I_inverter(end)-x(4))/(Cmn(end)+(deri_Cmn(end)*x(1)))) 

- (I_inverter(end)-x(4))/(Cmp(end)+deri_Cmp(end)*(x(1)-

x(2))) ; (1/L1)*(Vin -x(1));(1/L2) * (VDD-x(2));]; 

  
end 
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B.2 Subfunctions

function [I_inverter] = Iin(Vin) 

  
% global I_inverter 

  
Imax= 2.5e-3; 
alpha = 0.2; 

  
I_inverter = 2*Imax ./( 1+exp( ( (Vin-1.5).^2 )./alpha)); 

     
end 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

function [Idiode]=Id(Vd) 

 
Io=1e-12; 
Vt=0.025;%V 
n=1.2; 

  
if Vd > 0.7 
    Idiode=10e-5*Vd^n -0.0000602 ; 
else  
    Idiode=-Io; 
end 
 

end 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
function [Cjj]=Cjn(Vd) 

 
    Cjo=1e-10; 
    beta=2;     

  
    if Vd < -0.7 
        Cjj=Cjo*exp(-Vd/beta); 
    else 
        Cjj=Cjo; 
    end 
end 
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