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SUMMARY

Laboratory models of geophysical magnetic field production require new experi-
mental characterization methods. Self-generating liquid metal magnetic dynamos
are explored using two new experiments. Kinematic dynamo studies lead us to charac-
terize the magnetic field dynamics in terms of eigenvalues and eigenfrequencies of
the induction equation. Observing the decay of magnetic field pulses indicates the
real part of the leading eigenvalue of the induction equation, while a chirp magnetic
field diagnoses the imaginary part of the eigenvalue. Finally, a single-frequency applied
magnetic field characterizes the structure of the velocity field. These measurements
provide a new means to characterize and measure the approach to self-generation.
We present data from numerical simulations and laboratory experiments using these

techniques.
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1 INTRODUCTION

Questions about planetary magnetic field saturation, dynamics
and the necessary geometry and forcing may soon be addressed
by laboratory experiments. We wish to explore the dynamo
mechanism where the motion of a conducting fluid generates
the magnetic field. Although magnetic field self-generation in
conducting liquid flows is a robust phenomena in nature, and
despite much progress having been made in the theoretical
and numerical studies of dynamo action, self-generation has not
yet been observed in laboratory liquid metal experiments. Self-
excited dynamos have been constructed using rotating disks,
cylinders or wound rotors (Roberts & Jensen 1993; Wilkinson
1984). The attempt closest to achieving self-generation in a
bulk liquid metal was performed by Gailitis es al. (1987). In
their experiment, liquid sodium was pumped through a spiral
channel to obtain the helical motion for a specific dynamo
theoretical geometry. Measurements suggested that the system
came to within 30 per cent of the threshold. Currently, several
cfforts to achieve experimental liquid metal dynamos are
underway, in Karlsruhe, Riga, Paris, Madison and College
Park. The efforts to build dynamo experiments necessitate
the development of experimental and analytical techniques to
characterize the transitions to self-generation in these systems.
In this paper, we demonstrate experimental techniques appro-
priate for studying this transition. These techniques include
pulse, single-frequency and multi-frequency (chirp) responsc
measurements to imposed magnetic fields. We also provide
an analysis of a single-frequency method by analytically and
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numerically examining the solutions of the induction equation
at low magnetic Reynolds number.

The existing theories of a Kinematic dynamo revolve around
the induction equation for a magnetic field B,

‘B

=Vx(VxB)+iV'B, (1)

ot

where V is the fluid velocity and y=1/cp is the magnetic
diffusivity, which is composed of the electrical conductivity o
and the magnetic permeability . This equation is derived from
the Maxwell equations and Ohm’s law for a moving conductor.
Recast into dimensionless form, the equation is

0B

Tf:]me’x(V‘xB)+V’2B, 2)
C

where Ry, = UL/ n for velocity scale U and length scale L, Vand
V have been non-dimensionalized using these scales and ¢
has been non-dimensionalized using the diffusive time L?/y.
The magnetic Reynolds number Ry characterizes the ratio of
magnetic field advection due to conductor motion to magnetic
field diffusion due to conductor resistivity,. When diffusion
dominates (Ry<<1). dynamo action is precluded. Previous
difficulties in observing self-generating laboratory liquid metal
dynamos stem partially from the small or modest Ry, achieved.
Because ol advances in the fast breeder reactor program and
the pioneering work of Gailitis et al. (1987), sodium handling
has become more routine. The high electrical conductivity
of sodium allows large Ry [Rm~ O(100)] to be achieved in
laboratory liquid metal dynamo experiments.
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The kinematic dynamo problem is as follows: given a pre-
scribed velocity field, will a seed magnetic field grow in time
(Moffatt 1978; Proctor & Gilbert 1994; Reyl 1996)? Numerical
simulations using a number of different velocity fields have
shown ftransition to self-generation when R, is above a
threshold value (Dudley & James 1989). It is assumed that
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Figure 1. Cross-section of the rotating convection experiment. A
titanium rotor contains 1.5 1 of liquid sodium. A solenoid wound about
the axis of rotation supplies excitation magnetic fields.
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before transition the Lorentz forces are weak and do not
appreciably change the fluid velocity field. This paper applies
ideas from the kinematic dynamo problem to develop
and demonstrate experimental techniques for studying the
transition to self-excitation.

2 EXPERIMENTAL SET-UP

The development of the characterization techniques stems
from our work on two dynamo experiments: a geophysically
motivated rotating convection experiment and a mechanically
forced experiment. The convection experiment (Fig. 1) consists
of a 20.3 cm diameter titanium vessel containing 1.5 1 of liquid
sodium. This experiment is motivated by planetary convection
such as is thought to occur in the Earth’s outer core. The vessel
15 heated on the outer rim by quartz tungsten heaters and
cooled along the axis by circulated hexane. The rotation causes
centrifugally driven convection in the liquid sodium, where the
centrifugal force replaces the gravitational force in planetary
convection, The mechanically forced experiment is motivated
by the work of Dudley & James (1989). The experiment (Fig. 2)
consists of a hollow 30.5 cm diameter stainless steel sphere
filled with 15 1 of liquid sodium. Two counter-rotating stainless
steel propellers, each powered by a 7.4 kW electric motor
controlled by a variable frequency drive, provide mechanical
pumping.

Both experiments use the same electronics for power control
and data acquisition. A data acquisition computer and a delay
pulse generator handle the timing of applied magnetic fields
and data acquisition. An FFT network analyser allows us to
examine signals from various sense coils, as well as providing
both sine and chirp sources for applied magnetic fields. IGBT
switches allow us to turn DC magnetic fields rapidly on and off,
and a Hall probe allows us to measure the decay of these DC
fields.

Hall Probes

magnet coils

Figure 2. Cross-section of the mechanically forced experiment. Independently rotating shafts each drive propellers, The axial location of the
propellers is adjustable. Each shaft is driven by a 7.5 kW motor controlled by variable frequency drives. Separate Helmholtz coil pairs supply
excitation magnetic fields along the z-axis (dipole field with m=0, along the shaft axis) and along the x-axis (dipole field at right-angles to the

shalt axis).
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3 DECAY MEASUREMENT TECHNIQUES

The induction equation (eq. 1) may be solved as an eigenvalue
problem for B, given the velocity field V (if V is stationary):

B=)  exp(ZnBi(r),

=0

JiB; =V x(V x B)+nV°B;, (3)

where /4;-B; are the eigenvalue—cigenvector pairs. Floquet
theory allows similar treatment if V is periodic in time. For
turbulent velocity fields, no exact solution is possible. Replacing
B with the time-averaged velocity field in eq.(2) is perhaps
a reasonable first approximation. The experiments of Gailitis
et al. (1987) partially support this view. These eigenvalues
and eigenvectors are functionals of the velocity field. For
conditions below transition, the largest eigenvalue is negative
and the decay time t of the magnetic field is given by
v = — % (/)= — max(# (4)). Measurements of the eigen-
value 4, allow one to quantify the transition of a system from a
damped state to a self-excited one. For a suitable velocity field
and sufficiently large Ry,. a positive #(4,) occurs and small
field perturbations grow exponentially in time (Moffatt 1978;
Proctor & Gilbert 1994). The initial time dependence of the
growing field will be set by the value of A,. Above transition,
saturation of B will occur when the Lorentz force begins to
modify the velocity field. This may cause steady, oscillatory,
chaotic or turbulent magnetic fields reyl. A pulse measurement,
which is specifically designed to study this transition, utilizes
Hall effect magnetic field measurements in association with an
external excitation coil. It can be used to determine how far
the system is from the threshold magnetic Reynolds number.
The measurement is performed by observing the decay rate
of the magnetic field after an external DC field is applied
and then rapidly turned off. The magnetic field will show an
exponential decay due to induced eddy currents in the liquid
metal and the conducting parts of the apparatus. With no
velocity field, this phenomenon is the same as one sees in the
decay of current and field in an LR circuit. The time constant t
can be estimated when Ry =0 from the magnetic diffusion
time, =L, J. > -1 ', If there are motions in the liquid
metal that enhance field growth but are not strong enough
to overcome resistive decay, the eigenvalue will shift towards
zero. If we are above transition, the field will not decay at all.
As the system passes transition, the value of the eigenvalue will
pass through zero.

Fig. 3 shows a typical decay measurement taken from the
mechanically driven experiment. Fig. 3(a) shows the full decay
measurement, while Fig. 3(b) shows the semi-log plot of the
pulse just after the applied field is turned off. A least-squares fit
to the data gives the slope that is taken as an estimate of Agux.
As the system approaches transition to self-generation, one
would see the pulse decay more slowly as Apn,« approaches
zero. After transition the field should grow exponentially until
saturation.

An increasing (towards zero) eigenvalue has been measured
for the mechanically forced system with magnetic fields pulsed
in the z-direction (along the axes of the propellers). Fig.4
shows the dependence of the eigenvalues on magnetic Reynolds
number for a configuration with 12.7 cm propellers with 12.7 ¢m
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Figure 3. A pulse decay measurement is used to estimate the largest
eigenvalue for the magnetic field dynamics, A Hall probe signal (a)
indicates the magnetic field during the pulse. Analysis of the decay
using a least-squares estimate of the slope (b) yields an cigenvalue
estimate,

pitch, mounted with 15.3 ¢m between the propellers axially.
Four |.5-cm-wide baffles were placed running longitudinally in
order to enhance flow towards the poles (poloidal flow). Since
the eigenvalues should be sensitive to the geometry, measure-
ments of the eigenvalue dependence on propeller position and
propeller/impeller gecometry are currently being performed.
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Figure 4. Variation of the decay eigenvalues (normalized by the
unforced decay rate) for fields stimulated in the z-direction (m=0. along
the shaft axis) and the x-direction (m=1) in the mechanically forced
experiment, The m=0 direction shows a trend towards self-generation,
which would be achieved when 4=0.
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4 CHIRP MEASUREMENT TECHNIQUE

The chirp magnetic field excitation consists of exciting the
system over a specific range of frequencies with equal power
per frequency. In this way we measure the response of the
liquid metal system to a large number of frequencies at once.
This allows an evaluation of the imaginary part of the eigen-
value Z,. The induced magnetic field will be amplified greatly at
resonance, that is, when the excitation frequency coincides
with the least damped frequency, w, =.7»(4,). This follows
from the solution to eq.(2) in the presence of an external
excitation at a frequency ay:

o
B=S"|—% exp(iwot)+ Dy exp (ict) Bi(r). (4)
=0 Ty 7/1}‘

Here wy is the excitation frequency and Cy, Dy are constants
associated with initial and boundary conditions.

Fig.5 shows a typical chirp response measured using a
pick-up coil attached just outside the case of the mechanically
driven experiment. If the system approaches self-generation to
an AC magnetic field, the chirp response would show a peak at
that frequency, which would continue to grow as the system
approaches transition. One can also use the chirp measure-
ment to obtain Ay, for modes with zero imaginary part
by measuring the chirp response as frequency approaches
zero. Using a linear regression to find the magnitude at w=0,
one could obtain similar information to that obtained when
medsuring a system'’s response with a pulsed magnetic field.
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Figure 5. Power spectrum of the magnetic field in response to a chirp
of imposed magnetic field. A synthesized signal containing com-
ponents from 0.7 to 290 Hz is generated by an FFT network analyser.
A power amplifier supplies that signal to an /=1, m=0 coil external
to the dynamo experiment. A stationary coil detects magnetic fields
exiting the system in response to this external perturbation. If the
system approaches transition with a non-zero imaginary part of
the leading eigenvalue, this diagnostic will show a peak forming at the
characteristic frequency.
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5 SINGLE-FREQUENCY DIAGNOSTIC

A single-frequency technique has been used to characterize the
pattern of the liquid metal velocity field. The method consists
of exciting the system with an external magnetic field at a single
frequency and then measuring the spectrum of the response
magnetic field exiting the system. In order to understand
this measurement, we begin with the dimensionless induction
equation (eq. 2). When Ry, « 1, we can expand B in a convergent
power series of Ry, of the form

B= S B.R. (5)
k=0

Because eq.(2) is linear in B, the equations of motion to first
order reduce to

"
By _vog,, (6)
ol

‘T »l

%:Vx(VxBuH-V”BI. (7)
(&

We can interpret By as the field produced by the excitation coils
permeating the system. B is the first-order response field due
to the velocity advecting By.

In the rotating convection experiment, the strong rotation
will organize the flow with respect to the axis of rotation.
One measure of this is the Ekman number, E=1v/2QL7%
which characterizes the balance of viscous to Coriolis forces.
Typical Ekman numbers in our rotating convection experiment
are E=4x1077-5x 10~%, indicating a strongly rotating state.
Such flows often exhibit geostrophic balance (Busse 1970)
and organize into flow patterns independent of the direction
aligned with the axis of rotation. Simple convective patterns
take the form of Taylor columns (vortices aligned with the
z-axis) with m-fold azimuthal symmetry, In the laboratory
frame this rotating m-fold pattern yields frequencies of m€.
The VxV x B term in eq. (7) will generate beats of frequency
m&+ @ that are seen in the spectrum of the magnetic field as
measured by a pick-up coil. Similarly. an applied external DC
field will produce frequencies of m€.

Although the experiment has Ry ~1. we expect the pre-
vious analysis of the induced field in egs (5)(7) to provide
insight into velocity structures in the experiment, as long as the
system is below the transition to self-generation. Fig. 6 shows
two spectra from a pick-up coil just outside the rotating con-
vection experiment. The spectra show data at a rotor speed
of Q/2n=98 rps and an applied field excitation frequency of
w=060 Hz. The top graph shows the experiment with a
temperature drop AT~ 17 °C, while the bottom graph has
AT ~22 °C. One expects the complexity of the convection to
increase with increasing AT. Both graphs contain peaks at ..
while only at the smaller temperature difference do we observe
peaks at mQ (m=2 and 4 are prominent) and mQ +w. This
can be interpreted as showing two pairs of roll structures at
AT ~17 °C, while at AT ~22 °C the state appears turbulent
with no well-defined roll pattern.

We consider some analytical and numerical analyses to
understand this technique further. It is useful to idealize the
geometry for these analyses. We consider a cylindrical annulus
of height H filled with a liquid and rotating with an angular
velocity Q about its vertical axis. We use eqs (5). (6) and (7) for
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Figure 6. Spectra of the magnetic field fluctuations while the system
is excited by a single frequency (60 Hz). The rotor was driven al a
rotation rate of Q/2n=98 Hz. Peaks at sum and difference frequencies
are observed in (a) where AT =17 "C. Broad-band spectra indicative of
turbulent convection in appear in (b) where AT =22 °C .

the induction equation expanded for small magnetic Reynolds

number. The linearity of eq. (1) allows one to rewrite eq. (7) for

higher-order By:

7By

SE=Vx(VxBe )+ VB (8)
Eq.(6) should be supplemented by a boundary condition

that is determined by the configuration of the experimental

set-up. With an applied external magnetic field, harmonic in

time and aligned parallel to the axis of rotation, eq.(6) has a

solution of the form

Jo(r/in)
Jo(y/Teg)

Here Jg is the zeroth-order Bessel function, @y is the frequency
of excitation, é. is the unit vector in the z direction and B, is the
amplitude of the external field. A, r and  are the height, radius
and inner cylinder radius, respectively, where the outer cylinder
radius is taken to be 1.

Eq. (7) is a diffusion equation with a source term

Q=(By-V)V—(V-V)By. (10)

This can easily be solved provided the Green'’s functions for the
diffusion equation and the velocity field are known. A simple

Bg=B‘é:e“"“‘=’( ) {=r<l, |z|<h. 9)

vortical velocity field consistent with geostrophic balance is
V=m_lvx(é:Pm.n)~ (11)

Ppyn= exp(—img)sin (y,(r—0)). (12)

Here, y,=nn(1 —{)~" is the radial wavenumber, . m are the

radial and azimuthal numbers and Vj is the velocity amplitude
ol a columnar roll. The geostrophic velocity is expressed in the
rotating frame of reference. To satisfy non-slip boundary con-
ditions at the top and bottom of the annulus, the geostrophic
velocity should be modified by Ekman layers (Zhang & Busse
1975; Busse & Carrigan 1974; Carrigan & Busse 1983).

Because of the two-dimensionality of V, the magnetic field
By is aligned parallel to the vertical axis Z. It is convenient to
take the temporal Fourier transform of eq, (7) using eq. (11) for
the velocity field,

'
- 5 3
(* By — — +l"”)31=\/r‘wa
r r=

i oy Ji(rv/iew) )
=B e (u Tl Ty
0, e (()+f1)0)(Jﬂ(\fi(1)[])) Y

Eq. (13) represents an example of the Sturm-Liouville problem,
which has a solution satisfying homogeneous boundary
conditions of the form

B (UR Y , Sl
51-G) (). s

Wi (r, @)= (YE{”D J 0,,(E) Ya(O)dE
5. 4

Va)\ 1 4 . .
- (}’2(1)) ‘L Q(u(‘:)yl(‘:)dg-

YJ = Jm( \/IIZJ!')N,”( \/HJ’J) i "Vm( ll-(-'1"')'}!'?1( \/E) s
Y?_ = Nm( \/FU”-IM( \/;”))C) = Jm( \/ﬁl) Nm( \/"71)':) .

Here J,, and N,, are the Bessel and Neumann functions of
order m. In the laboratory frame ¢— ¢ -+ Q. so the velocity field
associated with the convection rolls is a harmonic function of
the frequency. Therefore, V(g ~ 8(w =+ w, — mQ) (where 8
is the Dirac delta function). Performing an inverse Fourier
transform, the magnetic field By is found to be

B = & g ime gilm@—wy ([0 Wilr, mQ—wmyg). (15)
4 mQ—ayg

The rotation of fluid introduces a novel feature: the fre-
quency of oscillation of the induced magnetic field B, differs
from the excitation frequency of the external field. This shift in
frequency is a product of the number of vortices in azimuthal
direction /n and the speed of rotation Q. Therefore, the magnetic
field B, is characterized by well-pronounced spectral com-
ponents at frequencies wq+m€Q. Similarly, the second-order
magnetic field, B,, is characterized by spectral components at
frequencies wq +2mQ, and so on. Thus, the general form of
solution for the field By is

(14)

Blc . % e~ thmad ci(.’cmﬂ—ruu).' ( Wy

= m ) "Pk(]‘, km€— UJ()) ‘

(16)

Here the function ¥y is given by eq. (14) with the Bessel and
Neumann functions of order m replaced by the functions of
order Am.
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We observe that in contrast to the axisymmetric field
By, the induced magnetic field By is a periodic function of
angular variable ¢. Using asymptotic properties of Bessel and
Neumann functions, the magnitude of By can be estimated as:

@y 12 By ~(r—0(1 —r)exp[—(1—)y/|wp—mQ| /2],
we< 1: By ~(r—O01 —rywg. (17

At low values of the excitation frequency, wy<<1, the induced
field By is symmetric with respect to the circumference
i=(1+{)/2. At high values of the excitation frequency, wg> 1,
the induced field is expelled from the inner region of the annulus
and concentrates in a thin outer region. The thickness of the
magnetic field penctration is given by d = v/2|wy—m€| ~". This
example demonstrates the well-known effect of magnetic field
expulsion by a fluid flow with closed streamlines (MofTatt
1978).

Fig. 7 illustrates the results of simulations of the magnetic
field B;. These results were obtained by numerically integrating
eq.(13). where the velocity field was given by egs (11) and (12).
The number of vortices in the azimuthal direction was m =6,
and in the radial direction, n=1. The plots of B, were calcu-
lated for the following parameters: the speed of rotation,
Qy=1 Hz; the excitation frequencies, fy=1, 5, 10, 30 Hz, the
magnetic diffusivity of a fluid (liquid sodium), =800 cm*/s,
the apparatus length scale, Ry=10 ¢m; and the ratio of the
inner radius to the outer radius, £ =0.3. The dependence of the
averaged magnetic field, < By >, on the excitation frequency,
Jo=iwy/2m, is shown in Fig. 8.

Finally, Fig. 9 illustrates the distribution of B; over the
cross-sectional area of the annulus for the excitation frequency
fo=280 Hz. This figure shows that the induced magnetic field
concentrates near the outer boundary of the annulus, and the
field is weak in regions of strong convection velocity and strong
in regions of weak velocity. One can infer from this figure that
the number of ‘islands’ of the magnetic field is the same as
the number of columnar rolls, m=6. By analogy, the second-
order field. B,, is characterized by 2m ‘islands’, the third-order
field, Bi, by 3m ‘islands’, and so on. For moderate magnetic
Reynolds numbers, Ry, ~1, this circumstance makes the
distribution of the induced magnetic field complex.
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Figure 7. Theoretical distribution of the induced magnetic field due to

a system of vortices By / By with radial coordinate. The rotation rate is
Q/2n=1 Hz.
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Figure 8. The theoretical dependence of the magnetic field
averaged over the cross-sectional area of the annulus, < By > =
2B '(1=0%) [1 7| By (r)|dr on the excitation frequency, fy. The speed
of rotation of the Auid is Oy /2z=1 Hz.
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Figure 9. The theoretical isolines of the induced magnetic field,
By. calculated for an excitation frequency fy=80 Hz and a speed of
rotation /2n=1 Hz.

6 CONCLUSIONS

We have presented three techniques for characterizing
laboratory geophysical liquid metal flows designed to achieve
dynamo action. The pulse and chirp measurements are useful
to indicate the leading eigenvalue for the magnetic field as
one approaches transition. Single-frequency measurements are
used to diagnose the structure of the velocity field. It is our hope
that these techniques will be useful to the many experimental
groups working on this challenging problem.
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