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Abstract

Strongly driven waves break and lead to local singularities. Parametrically forced standing waves (Faraday waves) may
break leading to a local power-law divergence on the free surface. We experimentally explore this state for its local structure,
time dynamics and threshold for creation. A local analytical model for the surface height compares favorably with image
sequences taken of individual events. Copyright © 1998 Published by Elsevier Science B.V.

1. Introduction

In this paper we explore singularities occurring
on liquid surfaces as a consequence of overdriven
standing waves. The singularities we are referring to
are local divergences in the amplitude or gradients of
some physical field. Many spatio-temporal dynamical
systems exhibit singularities. These physical systems
usually have some ultraviolet cutoff terminating the
singularity at its tip. These cutoffs are extra physical
phenomena which often come into play only when
the ordinary description breaks down.

As an example, consider incompressible turbulence.
Sreenivasan [1] and others observed that large fluctu-
ations in the derivatives occur and that the dissipation
field appears multifractal (a set of nested singularities).
These singularities or near-singularities are cutoff in
physical turbulent states by several possible phenom-
ena, including a viscous cutoff of the small-length
scales (Kolmogorov scale cutoff). The viscous cutoff
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is included in the Navier-Stokes formulation of fluid
flow.

This first cutoff should be contrasted with one other
mechanism— cavitation [2,3]. Large fluctuations in the
velocity derivatives, often in the form of large-vorticity
fluctuations, cause corresponding fluctuations in the
pressure field. Large negative fluctuations in the pres-
sure are given a cutoff by the formation of vacuum or
vapor bubbles (cavitation bubbles) in the liquid. This
formation falls outside the limited mathematical de-
scription of fluid flow — the Navier—-Stokes equations.
Large positive fluctuations in the pressure do not have
as straightforward a cutoff, and the pressure fluctua-
tions can reach enormous levels, enough to damage
solids or possibly to cause light emission (cavitation
luminescence and sono-luminescence).

Nonlinear optical systems exhibiting a positive Kerr
coefficient also exhibit self-focusing and nonlinear
propagation effects [4]. This may lead to the collapse
of the optical power density into local divergences.
This phenomenon has important consequences to
optical damage of optical fibers and laser systems.
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These systems are often modeled in some simple sit-
uations by the nonlinear Schroedinger equation. This
equation is known to have finite time singularities
associated with self-focusing. The optical damage to
real materials, as well as to some dispersive phenom-
ena, produces limitations in the local power density,
1.e., a small-scale cutoff.

Near-singularities have been studied in the com-
plex Ginzberg-Landau equations. Luce and Doering
[5] have studied this problem from the point of view
of that the nonlinear Schroedinger equation is the con-
servative limit of the complex Ginzberg-Iandau equa-
tions. As the former show finite time singularities,
the way in which the dissipative case admits a small-
length scale cap on the singularities (again an ultravi-
olet cutoff) proves interesting.

Gravitational singularities from another less under-
stood example [6]. The formation of black holes and
the possibility of naked singularities occurring during
their formation constitute a hard-to-observe but tanta-
lizing possibility. The governing equations — the Ein-
stein equations — are a set of coupled nonlinear par-
tial differential equations (PDE’s) for the curvature
and energy density. What classes of singularities these
equations admit is not completely understood, but par-
ticular examples are known.

These systems appear to form a non-trivial list
of diverse examples with one common feature: all
spring from nonlinear PDE systems. Therefore, it
appears useful to define a class of solutions of non-
linear PDE systems that exhibit local singularities or
near-singularities and to study that group as a class.

Wave-breaking states necessarily contain singu-
larities, since they exhibit a change from a simply
connected free surface to a free surface connected in
multiple ways. Singularities in surface waves occur
in several contexts. The breaking of waves on a beach
causes topological changes: the creation of spray, air
entrainment, and foam. Breakers on a beach also have
a large range of length scales in the gravity-dominated
regime.

Waves on the open ocean that break can also show
several types of singular phenomena. The limiting case
of Stokes waves shows infinite acceleration. The spray
and foam produced in deep-water breaking also con-

tain gravity—capillary singular phenomena associated
with the change in topology. This type of spray pro-
duction also occurs in rivers and streams with signifi-
cant surface and bulk turbulence.

The nature of these singularities has recently been
the subject of several important theoretical works [7—
10]. Wave-breaking singular phenomena in the ocean
usually involve propagating waves and thus are dif-
ficult to disentangle from wind-driven properties and
the convective instabilities involved.

All these natural phenomena did not adequately pre-
pare us for the experimental observations of these sin-
gularities, which show not only large accelerations and
velocities but large displacements as well. This type
of singularity is perhaps more akin to phenomena ob-
served in wave impact on cliffs. Impact of solid objects
into bodies of water also may lead to similar pheno-
mena. This we will explore in the section on the local
behavior of the singularities.

In our experiments, surface wave singularities are
produced on a liquid surface by vertically oscillating
a container (Faraday excitation). Standing waves pro-
duced in this way can be precisely controlled, and they
afford detailed local diagnostics for their time recur-
rent phenomena. These liquid singularities are mod-
est in length and time scales, thus permitting a more
complete experimental characterization than is possi-
ble for the other types of physical phenomena dis-
cussed earlier. In these experiments, the flat surface
becomes unstable to periodic surface waves at a criti-
cal acceleration (via the Faraday instability [11]). As
the excitation increases past periodic waves and mod-
ulated waves, a sharp transition to a state with spikes
on the surface that eject droplets from the tip is ob-
served. Much is already known about the onset of pe-
riodic surface waves and the existence of spatial and
temporal chaos in this systemn [12-18).

Longuet-Higgins may be the first to have observed
surface singularities arising from parametrically
forced waves. Unfortunately, his analytical solution
presented in that work is of the wrong concavity (con-
cave down), and thus does not explain the observed
phenomena.

Closely related work has been performed by
Eggers, Brenner, Nagel, and their collaborators at
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the University of Chicago. These papers include a
local analysis of the breakoff of a pendant droplet,
and they find rich structure in that singularity. The
singularity predicted by the analysis is of square-root
form (height depending on radius as & ~ r!/2). This
type of singularity, as well as those found analyti-
cally by Kuznetsov et al., are weak-type singularities.
Derivatives may diverge, but the form shows bounded
height. Strong singularities, those with divergent am-
plitude (as the NLSE show), appear to exist in the
surface wave problem. In their conclusion, Kuznetsov
et al. described observations of “more powerful sin-
gularities observed in numerical experiments”. As any
physical system must show some upper bound (an
ultraviolet cutoff), this is one issue we must address
in our experiments. It appears that the Rayleigh insta-
bility (breakup of a thin neck into droplets) supplies
that cutoff.

Bertozzi and Brenner have explored the types of
singularities to be found in the two-dimensional sur-
face flow limit, particularly the Hele-Shaw problem.
They have found several types of singularities that
depend sensitively on the initial conditions and that
are difficult to resolve with full precision numerical
simulations.

Finally we should mention the paper by Newell and
Zakharov [9] which predicted a change in topology in
gravity—capillary waves at a well-defined threshold for
power injection. This prediction was based on analysis
founded in Kolmogorov spectra for wave turbulence.
It was their paper that stimulated our work described
here.

We conjecture that we have observed a type of
strong singularity on a free surface where the height
of the surface diverges in the large viscosity limit. In
this limit the droplet breakoff is delayed, removing
the ultraviolet cutoff. This phenomenon is closely re-
lated to the theoretical predictions of Eggers [19] and
Zakharov [20] of the existence of self-similar surface
forms near a singularity.

This paper focuses on three aspects of ejecting sur-
face waves. First, we pursue local models for the spa-
tial and temporal structure of the singularity, including
a self-focusing mechanism and the power-law form
for the singularity. Second, we investigate the time dy-

namics of states exhibiting singularities. Finally, we
determine the parameter values needed to cause a state
with singularities, including the determination of the
threshold value of the forcing and the form of testable
models for that dependence.

2. Local characterization of the singularity

The Faraday singularity is produced by parametri-
cally forcing a tank partially filled with liquid in the
vertical direction. Small-amplitude periodic forcing of
a bulk liquid predictably results in an observable pe-
riodic behavior of the free surface {11]. A forcing fre-
quency can be chosen to excite the (2, 2) Fourier mode.
This mode has one central maximum alternating in
time with a central minimum. This central maximum
sets the location for the ensuing singularity.

Fig. 1 shows a series of images from a high-speed
movie of the events preceding and following the sur-
face singularity in the Faraday experiment. In these
images, the dark portion is created by refraction at the
interface between the liquid and air and thus outlines
the shape of the waves on the free surface. Fig. 1(a)
shows the surface wave maximum that directly pre-
cedes the singularity. Interestingly, the height of this
surface wave must be within a very specific range (the
critical height was found to be about 7.0cm) [21] in
order to produce a singular event. If this surface-wave
maximum is much taller, there is no ejection! Instead,
its collapse results in the liquid’s entraining an air bub-
ble [22] - a dissipative process — followed by a smooth
wave of very small height. Conversely, if the surface
wave is not tall enough, the result is simply another
smooth surface wave of greater height (gaining energy
from the parametric forcing). Through this process of
gradual amplification of surface waves, a surface wave
of critical height, like the one in Fig. 1(a), can be pro-
duced. Photographs (b) and (c) show what happens af-
ter the maximum in (a) falls: a depression results in the
free surface. This depression, with nearly cylindrical
side walls, quickly collapses due to the pressure dif-
ference across the air-liquid interface. This collapse
is responsible for the thin jet ejecting from the surface
in Fig. 1(d), as well as its subsequent growth in (e)
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Fig. 1. Several images of the Faraday experiment were taken using a high-speed motion picture camera at 250 frames per second.
These images illustrate the events around a singularity. (a) The last smooth wave (b) collapses, 9c) forming a cylindrical cavity that
(d) quickly results in a surface singularity that in turn (e) and (f) grows due to the balance of inertial and surface forces.

and (f). Rayleigh instabilities in the growing spike re-
sult in droplet formation near its apex. Gravitational
forces eventually cause the fluid in the spike to fall
and rejoin the bulk liquid, leaving behind an elongated
fluid structure that also breaks into droplets [7,23]. In-
ertial and surface forces are responsible for the growth
of the singularity, whereas gravitational forces are re-
sponsible for its eventual demise [24].

Here we explore a local hydrodynamic model for
the Faraday singularity as motivated by experimen-
tal observations. Figs. 1(b) and (c) show a collapsing
cylindrical depression in the fluid surface. The model
presented attempts to quantify how a collapsing cylin-
der can produce a surface singularity (d) as well as the
early growth (e) of the singularity. The first step is to

estimate the velocity field just before #g and, with the
aid of a Taylor expansion and the Navier-Stokes equa-
tions, just after 1o, the time at which the singularity oc-
curs. Surface tension is ignored in the Navier—Stokes
equations. Next, we find the effect of the velocity field
on the surface, h(r, t), by examining the kinematic
surface problem. Last, we verify that A (r, t) is consis-
tent with the velocity field that produced it by exam-
ining the Bernoulli equation, in which surface tension
is included.

Several energies inherent to fluid motion are use-
ful in characterizing the behavior of the fluid: kinetic
energy, energy lost to friction over a given time inter-
val (viscous power loss), surface tension energy, and
gravitational energy. Analyzing the magnitude of these



J.E. Hogrefe et al./Physica D 123 (1998) 183-205 187

Table 1
Expressions for various energies per unit mass

Energy per unit mass Quantity
Interval v2/2
Viscous (At)vvz/r2
Surface tension a/rp
Gravitational gh

energies near the singular event is helpful. Table 1
lists the various energies per unit mass of fluid. Here,
At is the characteristic timescale, r is the character-
istic length of scale, and v is the local velocity of the
fluid. The following fluid parameters also appear in
the table: v is kinematic viscosity, o is surface ten-
sion, and p is density. Lastly, g is acceleration due
to gravity. Near the singular event, At is small, r is
small, v is large, and v2/2 >> gh. Therefore, inertial
energy and surface energy are the important factors in
the growth of the singularity. Over sufficiently small
time intervals, very little of the total energy has been
converted to heat by the viscous forces. Thus, to a
good approximation, gravitational and viscous effects
can be neglected when investigating the behavior of
the fluid local to the singular event.

Consider as a simplified model of the self-focusing
the problem of a collapsing cylindrical vacuum cavity
of radius R(r) in an ideal, incompressible fluid. This
is motivated by the observations of the Faraday ex-
periment (Figs. 1(b) and (c)) that suggest that the air
cavity directly preceding the singularity is cylindrical
in shape. What is the resulting behavior of the free
surface after the cylinder has collapsed? If the veloc-
ity field of the bulk liquid has only a radial component
that varies only with r, incompressibility of the fluid
V - v = 0) requires that v,(r) be described locally
by v, = —c/r where r is the radial cylindrical co-
ordinate and c is a positive constant. By solving this
differential equation for the position of the cylindri-
cal wall R(r), one finds that the radius of the cylin-
der collapses as R(t) ~ /fo —f. As the radius of
the cylinder approaches zero, a singularity occurs be-
cause (1) the fluid impacts itself and (2) the velocity
diverges as R, r approach zero. At t = #g, the time of
impact, a filament of high pressure must arise to de-
celerate the fluid along r = 0. This pressure enforces

incompressibility. Since the fluid cannot pass through
itself, the radial velocity must obey v, = 0 for ¢ > 1.
The only relief from this pressure is for the fluid to
escape toward the free surface along the liner r = 0.
Thus, the effect of the pressure near the singularity is
to modify the assumed v, = —c/r to a form such as
v, = —cr/(1 4 r?), so that the radial velocity v, goes
smoothly to zero at r = 0. Since the region of inter-
est is in the neighborhood of the singularity, one can
perform a Taylor series expansion of v, near r = 0.
Such an expansion reveals a vanishing zeroth-order
term and a first-order term of v, ~ —r. Incompress-
ibility requires that V -v = 0. Thus, the radial velocity
v, ~ —r necessitates an axial velocity v, ~ z. By in-
serting this velocity field spatial dependence into the
Navier—Stokes equations

1
v+ (V- Vv = —;VP—Fszv ()

one finds that the time dependence for the radial and
axial velocities are, respectively, v, = —ar/2(t — tp)
and v, = az/(t — 1y), where a is a unitless, real con-
stant that characterizes the magnitude of v. Appearing
in these equations are the inertial terms on the left-
hand side, and the pressure term and the viscous term
on the right-hand side. Surface tension effects have not
been used explicitly here, but would be linked to the
pressure field P by serving as a boundary condition
for P. Gravitational effects are neglected since they
are small in comparison to inertial and surface forces
for times near t = tp = 0. In arriving at these velo-
city components, the divergence of the above Navier—
Stokes equations is taken, leaving Poisson’s equation
for P : V2P ~ —pV - (v- V)v. Assuming that the
pressure varies only with r, one can solve the one-
dimensional Poisson equation and obtain an expres-
sion for P that can be used at last to obtain the velocity
components.

With this information about the velocity field near
the singularity, one can begin to answer the central
question: what is the effect of this collapsing cylinder
on the free surface? Answering this question involves
solving the PDE for the kinematic surface problem

0h + vr0rh = vylz=p. )
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By substituting the earlier expressions for v, and v,,
this differential equation can be solved for 4 (r, r) using
the method of characteristics. The solutions have the
form

h(r, ) =1 f(rtP). 3)

There are two types of solution for the function h(r, ¢).
Ifa = a and B = a/2, then the function f is arbitrary.
The second solution, however, is

fw)=u” 4)

whereu = rtf and y = (a—a)/(B—a/2); at this point
« and B are arbitrary. (Zakharov also derived homo-
geneous solutions but for a two-dimensional Cartesian
system [20].) This leads naturally to the question of
which power law for u is selected, as different power
laws are represented by different choices of « and 8.
To address this exponent selection the effect of the
surface on the velocity field must be examined. This
verifies that the model is self-consistent. Recall that
by employing the kinematic surface equation, one can
use the velocity field v to obtain a general form for
h. Now, one checks which specific solution of 4 is
consistent with v by examining the Bernoulli equation
governing an inviscid fluid. (Viscous effects are ne-
glected since very little energy is dissipated over the
small time interval At = r — 1p. This assumption of
minimal energy dissipation is supported in our model
velocity field v which yields V2v = 0; i.e., v is a fric-
tionless field.) Inertial and surface tension terms are
included; by introducing the surface tension term ex-
plicitly here, one derives new information about the
solutions for 4. As before, the gravitational term is
neglected since its effect at early times is small in
comparison to the included terms. Assuming an irro-
tational flow, the Bernoulli equation governing the ve-
locity potential v = V¢ at the free surface is

86+ (Ve + Zrt =0, (5)
2 o

Note that we have selected only the small principle
radius of curvature and have neglected the larger one
in the term (o/pr| + o/ pr3). This is reasonable for a
thin jet, and neglects the Rayleigh instabilities asso-
ciated with the other radius. Substituting the velocity

potential ¢ = az?/2t — ar’ /4t corresponding to our
v and focusing on the region vertically up in the sin-
gularity (z >> r), all remaining terms are satisfied for
the solution with a particular exponent f (u) ~ u~!/2.
This analysis yields a predicted growth of

h(r,t) = btr~ /2, (6)

where b = /20 /pa(l — a) is a constant related to
the amplitude of the singularity and is obtained by

matching terms in the Bernoulli equation. If b is to be
real, then the positive constant a, which characterizes
the magnitude of the post-singularity velocity field, is
restricted to be in the interval (0, 1).

If the solutions have the form h = br¥(rtf)r =
btr='/2 then & and B should obey the relation o =
14 B/2 for any particular choice of & or B. This rela-
tion is necessary and sufficient to characterize any fit
to experimental data as a successful fit. If this relation
is not satisfied in the process of scaling experimental
data, then the theory is not valid and does not accu-
rately model the experiment. Also noteworthy is that
the theory makes no allowances for particular choices
of a or B; an entire family of values is predicted.

In the development of this theory, the effects of
gravity and the effects of Rayleigh instabilities high
in the vertical neck of the spike have been neglected.
The characteristic velocity due to gravitational effects
is v;g ~ gt. The result v, ~ z/¢ was found for regions
local to the singularity. Thus, by equating v, and v,
one finds for any fixed time ¢ a boundary for z below
which gravitational effects are important: z ~ gr2. The
timescale for droplet breakup due to Rayleigh insta-
bilities in a cylindrical jet of radius rg is given by ¢ ~
6vprg/o [25]. A radial dependence of r ~ b2z 22
was predicted by theory. Hence, by equating rg and r
in the two previous equations, one finds for any fixed
time ¢ a boundary for z above which Rayleigh effects
should dominate: z ~ /6vb?pt /o. Fig. 2 shows these
two boundaries with actual data from the Faraday ex-
periment appearing as a series of vertical lines.! The

UIn every plot in this section containing a spatial or tempo-
ral variable, each spatial variable is in centimeters, and each
temporal variable is in seconds.
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Fig. 2. The region between the two boundary curves corresponds
to the domain of validity of the theory. Below the lower curve,
z = gr?, gravitational effects are important. Above the upper
curve, 7 = (6vb2pt/or)'/2, Rayleigh instabilities dominate. The
circles indicate experimental data used in the analysis.

region between the two boundary curves is the region
in which this theory is expected to hold.

Most of the data fall within the domain of valid-
ity, even though the top curve is a conservative esti-
mate of the least upper bound. Rayleigh instabilities
are associated with a stationary, cylindrical fluid struc-
ture. Observations suggest that our non-cylindrical jet
not only convects any developing local instabilities far
away from the region of interest quickly, but does so
with shearing (the topmost fluid rises faster than the
bottommost fluid). The following explains in greater
detail why the upper curve is merely an estimate for
the least upper bound and why we think that this es-
timate is a conservative one. The Rayleigh instability
causes the local singularity to break up into droplets
high on the thin neck. Our understanding of this pro-
cess has come from a simple application of the theory
of breakup of fluid cylinders due to surface tension
in the presence of viscosity [25]. This theory is not
purely applicable to our case due to two differences in
the fluid/surface configuration. First, our fluid struc-
ture is not a cylinder, and the radius of the structure
does depend on height. Our initial simple estimates of

the time for the Rayleigh-based breakup have treated
each radius just as a separate location of instability
(as the radius varies slowly), and thus the timescale
for breakup is dependent on height. This is obviously
only an approximation. The second problem is per-
haps more serious. Instabilities occurring on the neck
of the fluid are both convected vertically upward by
the axial velocity and stretched. As dv,/9z is positive,
stretching will affect instabilities on the surface in a
severe way. Any surface perturbation that is growing
will have its wavelength grow in time (stretched). This
complication makes the simple linear stability analy-
sis based on Fourier modes inapplicable. The Rayleigh
instability in the presence of stretching has not been
researched in detail.

2.1. Faraday experiment

2.1.1. Description of experiment

A general description of the Faraday experiment has
already been given (see Fig. 1 and surrounding text).
However, the specifics of the experiment which were
neglected earlier are discussed here.

The tank containing the fluid was 12ecmx12cm in
the horizontal plane and 28 cm tall. About 1.00 x
10* cm?® of fluid, a 92%-glycerin 8%-water mixture
with a viscosity of about 300 centistokes and a surface
tension of 64.9dyne/cm, were put into the tank so
that the fluid depth was 7.0 cm. The tank was shaken
at a frequency of 7.40 Hz. This frequency was chosen
to excite the (2,2) Fourier mode of the tank so that
surface maxima and minima appeared conveniently in
the center of the tank. The peak acceleration of the
tank was 5.2m/s”. (Note that periodic accelerations
less than one gravity may produce these singularities.)

The singularities on the liquid-air interface were
filmed using a high-speed camera. Lights were fo-
cused on a white background placed behind the tank;
no direct light from the sources illuminated the fluid.
Underneath and to the sides of the tank was a black
cloth which served to contrast the liquid—air interface
(dark) against the background behind the tank (light).
A high-speed camera capable of filming 250 frames
per second equipped with a 50mm lens was placed
about 5 m from the tank so that the aperture was level
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with respect to the horizontal plane, and was aimed at
the stationary horizontal fluid—air interface.

Once the tank was set in motion, the periodic motion
of the tank produced a singularity or near-singularity
on the surface of the fluid approximately once every
14 oscillations. (The timescale for the growth of the
singularity is smaller than the timescale for the shak-
ing itself.) Because of the aperiodic nature of this state
(see Section 3), events closer and further from the crit-
ical height can be observed. The ejection states of in-
terest were those characterized by a very thin, exactly
vertical filament of fluid that shot up from the sur-
face as a result of the collapse of the previous smooth
wave of critical height. The filming process would of-
ten take between 15 and 30 min before a singularity
that matched all the criteria was recorded. Filming
sessions never lasted longer than 30 min because both
the lights and the motion of the tank caused the fluid
to heat up and thereby lower its viscosity. Care was
taken to switch off the lights between filming periods
so that temperature variations were minimized. The
black-and-white images were transferred to and saved
on a computer where all the analysis was done.

2.1.2. Experimental results
The theory for the development of the singularity
predicted the power-law scaling

2= bt (rtPy = ber='72, (7

The predicted scaling demands that the following re-
lation between the exponents o and 8 be satisfied by
the experimental data

a:l+%ﬁ (8)

and, further, that no particular (&, 8) pair be inferred.
Indeed, the results confirm the theory very well, as
shown in Fig. 3 (see footnote 1).

The inset in Fig. 3 shows the r and z coordinates,
i.e., the raw data, of the free surface singularity for the
first few frames after #. 2 The earlier frames are nearer

2 Technically, all figures in this section involving r and z
actually show the Cartesian coordinates (x, z) representative of
a cross-section of a cylindrically symmetrical shape centered at
x = 0. However, because the shape is cylindrically symmetrical,
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Fig. 3. Data from the Faraday experiment are shown. (a) The
inset shows the growth of the surface singularity for different
times < 0.06s after fp. (b) The main graph shows a collapse
of the data in the inset according to the scaling @ = 1 + 8/2
and the choice (o, 8) = (3/2. 1).

to the cylindrically symmetrical center. By ploiting
z/t* versus rtP, all the data collapse onto one curve
as predicted. This curve, a power law for u = r¢#,
is shown in the main portion of Fig. 3. The predicted
scaling of @ = 1+ 8/2 was used to generate this plot.
But was this the best possible scaling?

The answer to that question is very nearly “yes”. A
statistical test of collapse for (e, B) pairs is given by
the statistical coefficient of determination R from the
linear regression for Fig. 5; R is defined in the interval
[0, 1]. Fig. 4 is an image in which different colors rep-
resent different intervals of these R values for (o, 8)
pairs between @ = [—1, 1] and 8 = [—1, 1]. Colors
near red indicate better fits; colors near blue indicate
poorer fits. This plot of coefficients of determination
in Fig. 4 thus highlights the line that best fits the ex-
perimental data. This line, « = 4/5 + 8/2, is shown
in white. The line predicted by theory and represented
in Fig. 3, @ = | 4+ B/2, is shown in black. The two

thinking of the x-coordinate in terms of a radius is convenient.
“Negative” radial values are plotted so that the shape of the
singularity is preserved in the presentation.
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Fig. 4. The collapse of data for Faraday singularities is shown. Coefficients of determination for many (o, B) pairs are repre-
sented by colors. These colors are shown in the legend: red represents the interval R = [0.999, 1], yellow represents the inter-
val R = [0.995,0.999), green represents the interval R = [0.990, 0.995), and so forth until blue which represents the interval
R = [0,0.980). The white line is the line that best fits the experimental data: & = 4/5 + B/2. The black line is the line predicted
by theory: @ = 1 + B/2. -
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Fig. 5. For the Faraday experiment, a log-log plot of the
collapsed data in Fig. 3 is shown. The slope of this line is
y = —0.50; the coefficient of determination is R = 0.987.

lines are parallel and nearly coincide, indicating a rea-
sonable match between theory and experiment. The
(o, B) pair that was used to produce those three fig-
ures, (3/2, 1), is a pair that shows a typical fit to the
experimental data.

Fig. 5 shows a log-log plot of the data in Fig. 3.
(The raw data were first folded about the line r = 0
in order that no logarithms of negative numbers were
taken.) Again, the same («, 8) = (3/2, 1) pair for the
predicted scaling is shown. The plot appears linear,
just as predicted by the theory. Furthermore, the slope
of this line is y = —0.50, exactly the value —1/2
predicted by the theory. A slight scatter in the data
results in a coefficient of determination of R = 0.987.

Fig. 6 shows a plot of the average value of z/r /2
for each snapshot against time. (One snapshot is a
set of (r, z) coordinates of the edge of the singularity
at a specific time in the early growth phase of the
singularity.) This plot of (z/r~'/2) versus ¢ results in a
very straight line (R = 0.999). The precise fit to a line
is another example of the close agreement between
experiment and theory.

The slope of this line is b = 50. Recall that the-

ory defines b = /20 /pa(l —a) as a constant char-
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Fig. 6. For the Faraday experiment, average values of z/r~!/2
for each snapshot are plotted against time. The coefficient of
determination R = 0.999 indicates a linear behavior. The slope
of this line gives b = 50.

acterizing the magnitude of the singularity, where a is
a unitless constant in the interval (0, 1) related to the
magnitude of the post-singularity velocity field of the
fluid. Apparently, by determining b one learns some-
thing about a without ever directly measuring the ve-
locity field of the fluid. Solving the quadratic equation
for a yields two solutions, a = 0.04 and a = 0.96.
The smaller term is discarded since velocity fields of
small magnitude presumably are not associated with
large-surface singularities. That one can learn some-
thing about the velocity field of the singularity simply
by quantifying its magnitude is a satisfying and useful
result.

The Faraday experiment was repeated and its data
were analyzed similarly several times. The figures
shown were from a typical dataset.

2.2. Impact experiment

2.2.1. Description of experiment

The impact of a solid sphere of sufficient velocity
upon the free surface of a liquid produces a surface
singularity. Fig. 7 shows a series of images from a
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Fig. 7. Several images of the impact experiment were taken using a high-speed motion picture camera at 250 frames per second.
(a) The metal sphere falls then impacts the surface leaving behind (b) a cavity that (c) pinches off and forms an hourglass-shaped
structure, the collapse of which (d) quickly results in a surface singularity that, in turn, (e) and (f) grows due to the balance of

inertial and surface forces.

high-speed movie of the events preceding and follow-
ing the surface singularity. The dark portion is the in-
terface between the liquid below and the air above.
The photograph in (a) shows the ball directly before
it impacts the surface. After the ball impacts the sur-
face, it continues to fall through the fluid, leading be-
hind a depression on the surface shown in (b). The
depression seems cylindrical, as in the Faraday ex-
periment, but only momentarily. The cylindrical de-
pression shown in (b) is being stretched by the falling
ball. In (c), the stretching cylinder is pinched off near
its center, resulting in an hourglass-shaped depression.
Note that the stretching cylindrical depression shown
in (b) and the cylindrical depression associated with
the Faraday experiment collapse quite differently. The
hourglass-shaped depression quickly collapses, again
due to the pressure difference across the air-liquid in-

terface, resulting in the singular event shown in (d).
The photographs in (e) and (f) show the subsequent
development of the singularity. Similar to the Faraday
singularity, Rayleigh instabilities in the growing spike
result in droplet formation near its apex. The fluid in
the spike falls and rejoins the bulk liquid, leaving be-
hind an elongated “filament” of fluid that also breaks
into droplets.

The impact experiment was designed to crudely
model the Faraday experiment at least for times near
fo. The dropping of the ball simulates the collapse of
the last smooth wave even though the mass distribution
in each was very different. As many other common
parameters as possible were matched: the diameter
(1.11 cm) and dropping height of the ball (7.0cm) in
the impact experiment were chosen to coincide with
the diameter and height of the last smooth wave in the
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Faraday experiment. The fluid used in each experiment
was identical: a 92%-glycerin 8%-water mixture with
a viscosity of 300 centistokes and a surface tension
of 64.9 dyne/cm. However, there were small unavoid-
able differences in the viscosities, densities, and sur-
face tensions of the metallic ball (impact experiment)
and the last smooth wave (Faraday experiment).

In order to film the singularities on the liquid-air
interface, the following lighting techniques and cam-
era settings were used. Behind the tank that contained
the fluid was a white background. Lights were focused
on the white background only; no direct light from
the sources illuminated the fluid. A high-speed cam-
era equipped with a 50 mm lens was used to record
the events local to and including the singularity at a
rate of 250 frames per second.

The Faraday experiment and the impact experiment
appear very similar to the naked eye: each experiment
produces a surface singularity. Similar forces are re-
sponsible for the growth and collapse of each struc-
ture. It is also clear, however, that at times long after
ty, the time of the singular event in each experiment,
the Faraday experiment is markedly different than the
impact experiment. Clearly, these differences are due
to the differences between parametric forcing and im-
pulse forcing. Therefore, any quantitative similarities
between the two experiments would be at times very
close to t = 10.

Upon investigation of the impact experiment, one
finds that the impact of the ball produces a stretching
cylindrical minimum in the fluid surface that pinches
off, resulting in an hourglass-shaped minimum. Per-
haps the differences in the Faraday and impact singu-
larities are due to the differences in the collapses prior
to 1.

2.2.2. Experimental results

The results for the impact experiment also suggest
power-law behavior. Since the theory for a collapsing
cylinder does not apply to this experiment, one would
certainly not expect solutions of the form z = brr—1/2,
However, the more general form of z = bt (rt#)Y (the
solution to the kinematic surface problem in the the-
ory) seemed like an appropriate place to begin. Here, b

is still a constant related to the amplitude of the singu-
larity, but cannot be related to the density, surface ten-
sion, or velocity field. In other words, because the form
z = bt*(r1P)? is taken out of its original context and

thus has no theoretical basis, b # +/20/pa(l — a).

The experimental data indeed follow the form
z = bt*(rtP)yY 9
for the scaling
a=1%+32p (10)

Fig. 8 illustrates this fit. A log—log plot of z/¢%
versus rt? results in a line with some coefficient of
determination R which is defined in the interval [0, 1].
Fig. 8 is an image in which different colors represent
different intervals of these R values for (o, B) pairs
between o = [—1, 1]. and 8 = [—1, 1]. Colors near
red indicate better fits; colors near blue indicate poorer
fits. This plot of coefficients of determination in Fig. 8
thus highlights the line that best fits the experimental
data. The empirical line, @ = 2/5 + 28/5, is shown
in white.

As in the Faraday experiment, no («, 8) pair falling
on this line is appreciably better or worse than any
other, and only times near #; follow the scaling. Ex-
perimental fits to the scaling @ = 2/5 + 28/5 can be
interpreted to mean that y = —2/5 and thus

2= b(r/1)"*5. (11)

Notice that this behavior is far different than the be-
havior of the Faraday experiment, even though in both
experiments only times near fy were investigated! This
surprising result is perhaps best explained by the dif-
ferences in shape between the pre-singularity surface
depressions: a cylindrical cavity corresponding to the
Faraday experiment and a conical cavity correspond-
ing to the impact experiment.

The inset in Fig. 9 shows the r and z coordinates,
Le., the raw data, of the free surface singularity for
the first few frames after 7y (see footnote 1). The ear-
lier frames are nearer to the cylindrically symmetric
center. By plotting z/1% versus rt?, all the data col-
lapse onto one curve as mentioned earlier. This curve,
a power law for u = rtP, is shown in the main portion
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Fig. 8. The collapse of data for impact singularities is shown. Coefficients of determination for many («, 8) pairs are represented by col-
ors. These colors are shown in the legend: red represents the interval R = [0.999, 1], yellow represents the interval R = [0.995, 0.999),
green represents the interval R = 0.990, 0.995), and so forth until blue which represents the interval R = [0, 0.980). The white line
is the line which best fits the experimental data o = 2/5 +28/5.

of Fig. 9. The scaling @ = 2/5 4 28/5 was used to Fig. 10 shows a log—log plot of the data in Fig. 9
generate this plot. Since no («, ) pair following this (see footnotes 1 and 2). (The raw data were first folded
scaling is better than any other, the arbitrary choice about the line » = 0 in order that no logarithms of

a = B = 2/3 is shown for simplicity. negative numbers were taken.) The plot appears very
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Fig. 9. For the impact experiment, (a) the inset shows the
growth of the surface singularity for different times < 0.06s
after #3. (b) The main graph shows a collapse of the data in the
inset according to the scaling & = 2/5 + 28/5 and the choice
a=p=2/3

In (z/t(2/3),

o
<
1

s0asl Lo Lo e gl Ll

-6 -5 —
10 10 10 10

1n (zt(2/3))

Fig. 10. For the impact experiment a log-log plot of the col-
lapsed data in the previous figure is shown. The slope of this line
is y = —0.40; the coefficient of determination is R = 0.995.
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Fig. 11. For the impact experiment average values of z/r~2/5

for each snapshot are plotted against r2/>. The coefficient of
determination R = 0.995 indicates a linear behavior. The slope
of this line gives b = 4.1,

linear, which indicates a good fit to the scaling. The
line has a slope of y = —0.40 and a coefficient of
determination R = (0.995.

Fig. 11 shows a plot similar to the one in Fig. 6,
but for the solutions z = (r/r)"z/5 (see footnote 1).
The average values of z/r %/ for each snapshot of
the growing singularity are shown plotted against 12/,
This plot results in an extremely straight line (R =
0.995), again indicating an agreement to the scaling.
The slope of the line is b = 4.1, where b is a constant
related to the amplitude of the singularity. Without a
theory to which it can be compared, » does not give
any insight into the velocity field of the fluid.

The impact experiment was repeated and its data
were analyzed several times. The figures shown were
from a typical dataset.

2.3. Conclusions

Two experiments that produce singularities on a
fluid surface, the Faraday experiment and the impact
experiment, were explored. A theory, motivated by
the cylindrical shape of the pre-singularity surface
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Fig. 12. Waveheight measurement technique. The curved wave
surface scatters all laser light hitting it while the light propagat-
ing above it is unscattered. The unscattered light is collected by
a parabolic mirror and focused on a photodiode. A computer
monitors voltage on the photodiode, which can be directly re-
lated to the amplitude of light striking the photodiode, which
in turn is a function of waveheight. This technique monitors
the shadow of the wave along one cross-section.

depression in the Faraday experiment, predicted that
the resulting shape of the singularity would grow ac-
cording to the power law z = btr /2, Investigation
of the Faraday experiment resulted in a confirmation
of the theory. Furthermore, information was derived
about the velocity field of the fluid after the singularity
occurred by comparing the experimental value for b to
its predicted form. The impact experiment was found
to produce a pre-singularity surface depression that
was hourglass-shaped and thus different from the one
produced by the Faraday experiment. This difference
is thought to be responsible for the results that show
a different growth of the singularity, z = b(r/1)~2/,
but a growth that nonetheless is power-law in form.

3. Bifurcations leading to a singular wave state

In this section we explore the dynamics of the singu-
lar Faraday experiments using a novel laser diagnostic
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Fig. 13. Time series of the waveheight at a driving frequency
of 7.40 Hz near the modulation threshold: (a) a periodic state
(4.72 m/sz), (b) a modulated state (4.98 m/sz), (c) a period-7
state (5.08 m/sz), and (d) an ejecting state (5.16 m/sz). The
flat top of the peak in (d) indicates the ejecting waveheight has
exceeded the range of the diagnostic optics.

measuring system. This technique is used to measure
waveheight. Fig. 12 shows how the measuring sys-
tem functions. A uniform laser sheet is produced and
aligned with the flat unshaken surface. As the wave-
height grows above the flat surface, the light is scat-
tered by the surface of the curved waves. The unscat-
tered light above the maximum height of the waves is
then collected in a photodiode detector using a con-
cave mirror. The computer reads voltage signals from
the detector that can be related back to the wave-
height. Using this laser measurement technique, we
gain a time series of maximum waveheight as a func-
tion of time. Fig. 13 shows some typical time-series
data from the experiment. The square tank, 12 x 12 x
28 cm, contained 960 ml of a 92% glycerin—water so-
lution. The (2,2) Fourier mode of the tank was ex-
cited by a 7.40Hz sinusoidal signal provided by an
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Fig. 14. Return maps showing (a) quasiperiodic motion, (b) period-7 motion, and (c) an aperiodic ejecting state as well as (d) model
motion formed from local maximum values H, from time series shown in the previous figure. Note that the instrument saturates at
11cm and waves are observed in (c) with filaments that hit the roof of the container (28 me, high). Those points between the two
square brackets in (c) show entrainment and oscillations of air bubbles below the surface.

electro-magnetic linear actuator driven by a power
amplifier.

The time series in Fig. 13 show typical dynam-
ics of the system as we vary the acceleration of the
tank. As we increase the acceleration, we see peri-
odic states at 3.86 m/s2 evolve to quasiperiodic states
at 4.96m/s’, then to period-7 states at 5.06m/s?,
and finally to broadband ejecting states at 5.10 m/s?.
If we continue to increase the acceleration, we find
period-6 states and different chaotic states. Observa-
tions vary from relatively simple axisymmetric states
to complicated swirling asymmetric states at higher
acceleration.

Using the maximum height H, of each wave,
we construct a two-dimensional phase diagram

{Hyn, Hy41}. These return maps are shown in Fig. 14,
along with the return map for a system modeled af-
ter the experiment. We form a simple model of this
observed return map for ejections:

yH, + __ 00408, H, < 0.48)
o (H, —048))2" "~ 7%
n+l 5 g 0.14H, -0
8+ —————~—(H” 048" > 0.484,
(12)

where A is the wavelength of the waves (A = 12¢m
here) and y, a constant varying from 1 to 1.5 (y =
1.19 for Fig. 14(c)). The location for the pole, at H, =
0.48%, is approximately independent of acceleration
in the ejecting states and is likely a consequence of
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geometry alone. The linear growth term y can be re-
lated back to the acceleration parameter by the follow-
ing analysis. Distances in the map will grow as

8= yp"d, (13)
while distances in the flow will grow as
8 = dpexp(ot). (14)

The time in the flow is related to that of the map
through the period and the number of maps, or

t=nT. (15)

Following the method in Shi et al., the acceleration
can be related to y through o, the growth rate of the
wave, because

0 = —0 +V(ka)? — (@ — wp)? + k(a —ap). (16)
The linear term dominates, and we find
y = exp(Tk(a — ap)), (17

which tells us how the growth rate is related to the
tank acceleration. This equation allows us to compare
the map and the physical system.

Fig. 14(a) shows the return map for the experiment
at a = 4.98m/s? displaying quasiperiodic motion;
as acceleration is increased, the limit cycle deforms
into a locked period-7 orbit (Fig. 14(b)). The map fi-
nally deforms and then forms folds for the ejecting
state (Fig. 14(c)) upon further increase. This “singu-
lar” map has developed a region of large-amplitude
excursions (here chopped above 11 cm due to limited
height of the laser sheet), and this divergence corre-
sponds to the filament tipped spikes observed in the
experiment. Fig. 14(d) shows the return map gener-
ated by the model. The growth, decay, and singular
characteristics of the wave states are represented quite
nicely, but return mechanisms for wave states are not
found in this model. This missing information is likely
crucial to creating a more accurate model of the phys-
ical system.

Fig. 15 shows the bifurcation diagram of the model
as a function of the growth parameter y. The bifur-
cation diagram exhibits periodic windows along with

20 [ LI . ‘1_?“‘ _‘ 1 ]
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0.9 1 1.1 1.2 1.3 1.4

Fig. 15. The bifurcation diagram of the model as a function
of y. This diagram shows qualitatively similar windows as the
physical data.

chaotic regions, period doubling, and crisis phenom-
ena. The bifurcation diagram undergoes reverse peri-
odic window reduction similar to the experimentally
observed sequence; the system may reach a period-7
state, exhibit chaos, and then exhibit a period-6 state as
one increases the acceleration. This model shows pe-
riodic windows comparable to the experimentally ob-
served sequence. However, the map does not capture
the observed quasiperiodic to ejecting chaotic transi-
tion and is qualitatively similar only in the parameter
region 1 < y < 1.64. A mapping of the form H,} =
g(Hy, H,_1) might better serve to model the return
mechanisms.

From the measurements of the waveheight, we con-
struct a diagram, shown in Fig. 16, of the frequen-
cies involved in the wave motion from power spectra
of the wave height (Fig. 13) for both (a) the physical
system and (b) the model. Both maps show period-6
and period-7 windows as well as aperiodic states. Very
low noise levels in quasiperiodic and multiple-periodic
states produce the blue background in the map. The
spectra of the ejecting states have greater background
in the map. The spectra of the ejecting states have
greater background noise (the yellow background in
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Fig. 16. A map of the power spectrum of waveheight as a function of the excitation acceleration and the spectrum frequency for both
system and model, all with forcing frequency 7.40 Hz. Color represents the amplitude of the spectrum components, scaled from blue
to red. (a) Each vertical strip represents one power spectrum of the time series of wave height as measured at a particular forcing
level of the tank ac. In (b) each vertical strip represents one power spectrum as measured at ac levels as calculated from Eq. (17).
Letters above denote stationary S, periodic P, modulated M, period-n Pn, and ejecting E wave states.
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the map) in both the model and the system, implying
aperiodic motion. Within the range 1 < y < 1.64,
the model agrees relatively well with the experimental
data, but outside this range, the model deviates sub-
stantially from the experimental data. The model does
show many similarities with the physical system, in-
cluding growth, decay, and singularities but lacks not
only the clear transition from quasiperiodic to aperi-
odic states but also the return mechanisms in the return
maps.

In summary, the Faraday system and model both ex-
hibit singularities, and yet both have low-dimensional
attractors associated with their dynamics. The simple
model, although not exact, is qualitatively similar to
the system with respect to growth, decay, and singular
nature. The model fails to capture accurately the tran-
sition from quasiperiodic to aperiodic motion, but we
are in the process of building better models for this
system as well as examining Lyaponov exponents and
entropies for both the system and model.

4. Viscous effects in droplet-ejecting capillary
waves

This section examines the threshold for droplet
ejection by turbulent surface waves produced by
Faraday excitation. Faraday surface waves, their
chaotic and turbulent bifurcation behavior, as well as
a number of their transitions, have already been stud-
ied in depth [12-14,16,26,27]. This section describes
capillary waves that experience a transition from a
turbulent non-ejecting state to a turbulent ejecting
state in a number of liquids with dissimilar fluid pro-
perties [21]. An example of an ejecting wave state in
a viscous fluid can be seen in Fig. 17. This system has
very turbulent behavior with a number of tall spikes
that randomly eject droplets.

In capillary surface waves, the transition from a
non-ejecting state to an ejecting state occurs when
waves are forced to the point that the Rayleigh in-
stability [25] breaks the wave peaks into droplets.
This transition occurs according to the following pat-
tern: First, the surface experiences several bifurcations
from the initial flat surface [16,28,29]. Surface waves

Fig. 17. Waves in an 80% glycerin—water (v =~ 0.43 cm?s)
solution exhibit random and turbulent behavior with a number
of pronounced wave peaks. This system is forced at 20 Hz.

evolve from a periodic standing wave state with in-
creased forcing and afterwards transform into an ape-
riodic state. Enough forcing produces large-amplitude
waves, frequently with elevated spikes that then break
into droplets [19,21-24,30,31]. This transition is in-
fluenced by several factors: (1) the kinematic surface
tension o/p, (2) the kinematic viscosity of the fluid
v = u/p, and (3) the applied forcing frequency wy,
where p is the density of the liquid, o is its interfacial
surface tension, and u is its Newtonian viscosity.

Droplet-ejection can occur over a wide range of
fluid and forcing parameters and in states where ei-
ther gravitational or capillary forces predominate. The
distinction between these two types of waves, capil-
lary and gravity, is determined by using the dispersion
relationship for small-amplitude periodic waves of in-
finite depth [32],

> :gk+%k3, (18)

where o is the angular frequency of the surface waves,
g the local value of the gravitational acceleration, and
k the wavenumber. Gravitational effects dominate at
lesser values of k, and surface-tension effects domi-
nate at higher values. Where the effects are equal, the
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Table 2
Experimental fluids

Fluid Viscosity Kinematic surface
(cm?/s) tension (cm?/s?)
Distilled Water 0.01 72.0
Ethanol 0.012 28.8
20% Glycerin—water 0.0157 69.7
32% Glycerin—-water 0.0226 67.3
44% Glycerin—water 0.0375 64.3
52% Glycerin—-water 0.0548 62.5
58% Glycerin—water 0.0772 60.2
64% Glycerin—water 0.104 59.1
68% Glycerin—water 0.147 58.1
72% Glycerin—water 0.195 574
76% Glycerin—water 0.275 56.6
80% Glycerin—water 0430 552
84% Glycerin—water 0.654 54.3
85% Glycerin—water 1.08 534

crossover wavenumber k. = /go/o determines the
crossover frequency w. = g%*(p/0)1/4. Our experi-
ments focus on the region of higher frequency where
capillary effects are the significant restoring forces
(@ > wc). In these experiments, the consequences of
the container geometry for the wave state have been
minimized by working with capillary wavelengths
much smaller than the container dimensions. Para-
metric excitation pushes energy primarily into waves
of frequency w = wy/2.

Our experiments determined the dependence of the
threshold acceleration a on the frequency wy, the sur-
face tension o/p, and the viscosity of the fluid v.
Threshold accelerations for water, solutions of water
and glycerin, and ethanol were measured according to
the following procedure. Fluid with a depth of 10cm
was used in either a 13.5cm diameter glass reaction
flask or a 19.5cm diameter cylindrical plastic con-
tainer.> The fluids used in this experiment are listed
in Table 2.

The container was then mounted on a TA100-20
Unholtz-Dickie Electromagnetic shaker, which sup-

3 Low frequency states where the wavelengths are non-
negligible when compared to container dimensions have waves
which are influenced by the geometry of the container. Low
frequency states will exhibit approximately stationary ejecting
waves as well as periodic ejecting states in certain circum-
stances. The bottom boundary contribution to the surface wave
state is minimized by using this depth (d > 10y).
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Fig. 18. The threshold accelerations for ethanol (o), water (+),
and five glycerin—water solutions (52% O, 68% 0, 76% |, 84%
X, 85% A). The viscosities of these fluids vary over two orders
of magnitude (0.01-1.08 cm2/s) while the surface tension has a
range of 22.75-72 cm’/s?.

plies up to 1100 N of force. A sinusoidal signal was
supplied to the shaker by a function generator and
amplifier. Applied acceleration was measured with an
accelerometer mounted on the armature of the shaker.
Either a FFT or a lock in amplifier was used to process
the accelerometer signal. Temperature was controlled
by running fluid from a bath of constant temperature
under an aluminum plate which served as the bottom
of the tank. The droplets were visually detected. Since
a critical slowing of droplet production appears near
the threshold, the criterion developed and used for on-
set of droplet ejection was two droplets detected within
a 10 s period. This threshold criterion introduces 2-3%
error to the data. Fig. 18 represents the viscous depen-
dence of the threshold acceleration for seven different
fluids.

In order to determine the functional form of the
threshold acceleration, the experimental threshold ac-
celeration a is plotted against angular forcing fre-
quency wy, scaled with the fluid parameters of kinetic
surface tension o/ p and kinetic viscosity v. Fig. 19 il-
lustrates this plot. Our definition of a non-dimensional
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Fig. 19. The threshold acceleration a* = av>/{o/p)* and forc-
ing frequency w* = wyv?/(o/p)> are scaled with the fluid pa-
rameters of viscosity and surface tension. The strength of this
NOD-HIMENSIDNANZANOD 35 sHown Py he coddapse of 2 of the
dwra. The non-Gimensionavized acceeraion & = vt pio )t
exhibits a transition between low- and high-viscosity behav-
icr. At low viscosities (w* < 107}, dhere is au mg/ 3 degen-
dence, illustrated by the solid line. In the higher viscosity region
(w* > 10_5), the threshold acceleration exhibits an wg/ 2 de-
pendence, as shown by the dashed line.

frequency is*

_ wov?
" (0/p)?

and of a non-dimensional acceleration (see footnote
4) is

*

(19)

ot = _“ﬁ__ (20)
(a/p)?

These scaled quantities cross over each other at
about w* ~ 107>, evident in Fig. 20. For o* <« 1075,
the angular frequency dependence a* ~ (w*)*/? (re-
gression yields (*)!3%7) is observed, while for w* >
1073,a dependence of a* ~ (w*)3/? (regression yields

4 The simplest free surface response to vertical excitation is
at one-half the excitation frequency, so the crossover excitation
frequency is twice wy.

aw I s
K
* - 2
0 " . “
107 == 5 — - - 0
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s ~
’.s"’
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* %-3/2 | \
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4 0
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o*

Fig. 20. The transition between low- and high-viscosity be-
havior is shown by scaling the non-dimensionalized threshold
acceleration with (0*)™>/2 and (w*)~4/3,

(w*) 470 is seen. This crossover leads to two differ-
ent functional forms for the threshold acceleration: (1)
for fluid of low viscosity, where surface tension effects
predominate, the threshold acceleration a is given by

o\ /3 X

a~0.261 (—) oy Q1)
0

or (2) for fluids where viscous effects predominate,

the functional form for a is

a~ 13062, 22)

Coefficients were determined by linear regression.
Both acceleration regions can be described by power
laws based on the same model for both low- and high-
viscosity systems. According to this model, ejections
occur, as the forcing is increased, when the ratio of the
waveheight 4 to the wavelength A approaches unity:

B~ A (23)

Analytical work done on waves formed in other sys-
tems supports this assumption. Limiting waveheight
and wavelength ratios, for both gravity and capillary
traveling waves, have been determined [33,34]. The
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waveheight/wavelength ratio is s = h/A = 0.14 for
gravity waves and s = 0.731 for capillary waves. If
h/)\ exceeds the above ratio for gravity waves, local
accelerations on the crest of the wave diverge, and
waves break. For periodic capillary waves, heights A
must be less than 0.731A. The parametric solution will
intersect itself otherwise. This corresponds to the im-
pact of two diverging vertical surfaces in the wave,
when jet formation [35,36] or air entrainment may
ocCur.

The motion of the tank can be described as simple
harmonic:

7 = Asinwyt, 24)

where z is the vertical displacement of the tank, A is
the peak displacement, and wy = 2w is the angular
velocity of the external forcing. Where low-viscosity
effects predominate, the assumption will remain that
waveheight scales as the amplitude of the external
forcing ha A. Restated in terms of the applied accel-
eration, this is

ha—. (25)
i

Our experimental observations confirm that for cap-
illary waves h =~ 47a/a)§.5 This assumption and
the dispersion relation for small-amplitude capillary
waves determine that the threshold acceleration for
droplet production in lowviscosity fluids scales as a ~
hw(z) ~ Awé, or

1/3
a = c1w8/3 (E) , (26)
P

where ¢ is some constant. Therefore, consistent with
observation, the threshold for low-viscosity fluids de-
pends on only surface tension and forcing frequency.

3 This nondimensionalization is arrived at by taking a non-

dimensional acceleration a* = ay/012/p and using the cor-
responding wavelength & = [ from the capillary dispersion
relation.

% Dimensional analysis can also be used to derive expressions
for the threshold acceleration. Surface tension o/p and fre-
quency @ can combine to an acceleration in only one way:
a CY(O'/,D)]'/}&)J'/B.

The waveheight is controlled by the balance of
power input and viscous dissipation in higher viscos-
ity fluids. The dissipation of viscous energy per unit
mass is expressed as

v oy Ov; 2

= -{—+=—1, 27

¢ ZZ(ij+8xi) @7

i, ]

where dv;/dx; is the rate of strain components within
the fluid. Energy dissipation scales, therefore, as

€= G)z (28)
where v is the characteristic length of the ejecting
surface waves and [ is their velocity scales. With the
maximum velocity |vmax| = hw as the characteristic
velocity and the wavelength A as the characteristic
length, the power dissipation is now

2

vmax)2 hw\~
~ = — ] . 29
€ v( n v( T ) (29)
The injected power can be expressed in terms of
the force and velocity of the tank P = Fv, where
v = a/ay, the peak velocity of the tank, and F = ma,
where m is the mass of the fluid and a is the peak

applied acceleration. The injected power per unit mass
p = P/m is thus

a?
p~—. (30
2]
The following relationship is produced by equating
the injected power with the viscous dissipated energy

and using the hypothesis # ~ A:
a = ey 02, 31)

Although the value for surface tension occurs in the
wavelength in this calculation, it no longer appears
in the expression for the threshold acceleration for
viscous liquids, as corroborated by the a* ~ (w*)3/2
dependence of the experimental observations. ’

To summarize, viscous effects on the threshold for
droplet ejection in capillary Faraday waves have been

7 An acceleration can only be formed from «3/2, v, and a/p
if @ =¥ /2172,
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investigated for water, ethanol, and glycerin—water so-
lutions. The observed viscous effects have been identi-
fied by first varying the fluid properties and the forcing
parameters and then ascertaining the threshold accel-
eration of several fluids. Not only has a transition
in behavior at the threshold been discovered, but a
simple scaling theory has also produced relationships
for both behavior regimes and has supported our ex-
perimental observations. Subsequent analysis of the
droplet-ejecting Faraday waves will include a statisti-
cal description of the droplet rates near threshold.
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