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Abstract

The physics of rotating, electrically conductive fluids allows for a
vast array of dynamical behaviors, many of which are relevant to
geophysical flows in the Earth's core: inertial waves, Alfvén waves,
magnetocoriolis (MC) waves, dynamo action, and geomagnetic re-
versals, among others. We report experimental observations of vari-
ous magnetohydrodynamic behaviors, including waves, in spherical
geometry. One set of results (Kelley et al., 2007) shows inertial
waves in Earth-like spherical Couette geometry. Evidence suggests
that the motions are forced by over-reflection at a shear layer in the
fluid. A second set of results, taken in a spherical shell with forcing
by a hydrofoil propeller, shows more complex wave-like behavior.
Multiple frequencies emerge both temporally and spatially, and ini-
tial analysis suggests that these motions are a superposition of MC
waves.

Past work
Experimental setup

Our experimental work in spherical Couette flow is directly moti-
vated by the geometry of Earth's core. The apparatus, shown here,
is designed to mimic the geometry of the core and has two indepen-
dently rotating concentric spheres, diameters 20 cm and 60 cm,
with 110 L of liquid sodium fill-
ing the gap between them. A
DC magnetic field B, parallel to
the rotation axis, with magni-
tude 150 G, is applied by a pair
of external electromagnets.
The bulk of our data comes
from an array of 25 Hall
probes, which measure the
component of the magnetic
field along a cylindrical radius
(B) at 21 locations along a me-
ridian and four additional loca-
tions around the equator. One
more Hall probe measures the
axial component of the field
(B) near the lower pole (see
diagram).

Results
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Two time series from a single Hall probe, along with their power
spectra. Experimental parameters are (Q,Q )/2rn=(5.7,29.9) Hz,
upper,; (Q,Q )/2n=(-12.2,29.9) Hz, lower.
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Spectrogram of inner sphere ramp showing oscillatory modes. Nor-
malized rotation rate x=Q . /Q_varies along the horizontal axis, and
normalized signal frequency (from an equatorial Hall probe) o, /Q
varies along the vertical. Color indicates power spectral density. Black
lines show Mach 2 boundaries; see below. Here Q /2n=29.9 Hz.
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Induction B /B, at the surface, over one revolution of the dominant pat-
tern, shown as a Mollweide projection: experimental data, above; theo-
retical prediction, below. Red indicates outward flux, blue, inward. The
agreement in degree |, order (azimuthal wavenumber) m, frequency
w/Q , and induction pattern between experimental data and theoreti-

cal predictions indicates the presence of inertial modes.

Over-reflection

What mechanism forces these inertial modes? A Tu
shear layer between two fluid regions can reflect

waves, and Ribner (1957) showed that if the Mach
number between the two regions M>2, over-
reflection can amplify the waves. In our experiment,
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Setting M=2 and m=(1,2,3,4) yields the lines plotted
on the spectrogram, above. As these lines bound the |
regions where inertial waves are present, we conclude

that over-reflection is the likely forcing mechanism.
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Ongoing work

In considering the dynamo effect in spherical
boundaries, Bullard and Gellman (1954) were
able to produce on mathematical grounds a
set of selection rules for the relationships be-
tween a flow field u, an imposed magnetic
field B,, and the induced magnetic field B'.
The authors went on to suggest a simple flow
as likely candidate for dynamo action. Later
numerical work (Dudley and James, 1989)
predicted the onset of dynamo action in a few
simple flows, including the ST, flow and the S T, flow, shown at
right (toroidal flow shown on left half; cross section of poloidal flow
shown on right half). Here the notation S T, indicates a superposi-
tion of vector spherical harmonics, es °+t.°, where ¢ is a dimension-
less parameter and
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Spherical coordinates (r,6,0) are used, and Y °8,0) is the scalar
spherical harmonic with (I,m)=(1,0).

Experimental setup

We study S, T, flows using the apparatus shown here, composed of
the same 60 cm outer sphere described above, which rotates to ap-
proximate toroidal T, flow, along with a hydrofoil propeller that
pumps axially to approximate po-
loidal S, flow. Because both rotation | T M1
rates are adjustable, we can directly

control the parameter . Six pole-

to-pole baffles (see photo) protrude (0 11

about 2.5 cm into the bulk to in- [, Fy
crease coupling to the sphere. We 3.4 I ‘
apply external, DC magnetic fields ’ \
both parallel to the rotation axis 2 (| "‘?}‘
(up to 400 G) and perpendicular to

it (up to 50 G) and observe the mag- q ' D

netic response with a set of 26 Hall
probes (see diagram). Initial experi-
ments have explored rotation rate

combinations -5 Hz < Q /2n < 10 |if ‘::‘\
Hz and -35 Hz < Q/2n < 35 Hz, with § M21
1Q /27| < 0.5 Hz and |Q/2x| < 5 Hz
being inaccessible because of
motor limitations.
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Two time series from a single Hall probe, along with their power
spectra. Experimental parameters are (2,Q )/2r=(-13,5) Hz, upper;
(Q,Q )/2r=(-18,10) Hz, lower. Filtered data also shown, see below.
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time series from a single Hall probe are > to26 ’ :
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shown above, along with their power
spectra. Note the peaks near 1.3Q_ and
2.4Q , which are present in many regions
of parameter space (see table, spectrograms below). At those pa-
rameter combinations, the induction at the surface of the sphere
also has a consistent shape (see plots below). However, the patterns
seem to have no well-defined azimuthal wavenumber, m. We have
attempted to simplify the patterns by bandpass filtering (1.2Q_ to
1.6Q , in red above, and 2.2Q_to 2.8Q, in green above), however
the azimuthal wavenumbers remain inconsistent and/or poorly de-
fined. The detailed structure of this induction pattern—along with
the physics that governs its excitation and dynamics—is the subject
of ongoing study.

Ranges of parameter space
where crescent behavior appears.
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\' Spectrograms of propeller ramps. Q _/2r=-3 Hz, left, -5 Hz, right.

Axes are as in above spectrogram.
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Induction B /B, at the surface over five revolutions of the outer sphere.
Red indicates outward flux, blue, inward. Q /2rn=5 Hz, left, 10 Hz,
right. Filter passband and strongest azimuthal wavenumber are as in-
dicated.
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