You can also find all publications with links listed here.
Theses
- Heidi Komkov, To be posted later, PhD Thesis, UMD 2021
- Anthony Mautino, Inverse spectral methods in acoustic normal mode velocimetry of high Reynolds number spherical couette flows, MS Thesis, UMD 2016
- Matthew Adams, Magnetic and acoustic investigations of turbulent spherical flow, UMD 2016
- Freja Nordsiek, Transport in Rayleigh-stable experimental Taylor-couette flow and granular electrification in a shaking experiment, UMD 2015
- David P. Meichle, Characterization of quantum vortex dynamics in superfluid helium, UMD 2015
- Myunghwan Park, Chaotic Oscillations in CMOS Integrated Circuits,UMD 2013
- Santiago A. Triana, Inertial waves in a laboratory model of the Earth's core,UMD 2010
- Daniel S. Zimmerman, Turbulent shear flow in a rapidly rotating spherical annulus,UMD 2010
Corrected Torque Transducer Schematic: replaces p. 310 - Matthew S. Paoletti, Experimental characterization of turbulent superfluid helium,UMD 2010
- Douglas H. Kelley, Rotating, Hydromagnetic laboratory experiment modelling planetary cores,UMD 2009
- Gregory P. Bewley, Using frozen hydrogen particles to observe rotating and quantized flows in liquid helium,Yale 2006
- Woodrow Shew, Liquid sodium model of earth's outer core, UMD 2004
- Daniel R. Sisan, Hydromagnetic turbulent instability in liquid sodium experiments, UMD 2004
- Benjamin Wolf Zeff, Three-dimensional dissipation scale measurements of turbulent flows, UMD 2002
Reports
- Fernanda Silva, Helium liquefier system report, UMD 2015
Superfluids
- D.P. Meichle and D.P. Lathrop. Nanoparticle dispersion in superfluid helium. Review of Scientific Instruments. 85 (7): 073705 (2014). [PDF] [DOI]
- E. Fonda, D.P. Meichle, N.T. Ouellette, S. Hormoz and D.P. Lathrop. Direct observation of Kelvin waves excited by quantized vortex reconnection. Proceedings of the National Academy of Sciences. 111 (Supplement 1): 4707-4710 (2014). [DOI]
- E. Fonda, K.R. Sreenivasan and D.P. Lathrop. Liquid nitrogen in fluid dynamics: Visualization and velocimetry using frozen particles. Review of Scientific Instruments. 83 (8): 085101 (2012). [DOI] [ADS]
- D.P. Meichle, C. Rorai, M.E. Fisher and D.P. Lathrop. Quantized vortex reconnection: Fixed points and initial conditions. Physical Review B. 86 (1) (2012). [DOI] [ADS]
- M.S. Paoletti and D.P. Lathrop. Quantum Turbulence. Annual Review of Condensed Matter Physics. 2 (1): 213-234 (2011). [DOI]
- M.S. Paoletti, M.E. Fisher and D.P. Lathrop. Reconnection dynamics for quantized vortices. Physica D: Nonlinear Phenomena. 239 (14): 1367-1377 (2010). [DOI] [ADS] [arXiv]
- M. Paoletti, M. Fisher, K. Sreenivasan and D. Lathrop. Velocity Statistics Distinguish Quantum Turbulence from Classical Turbulence. Physical Review Letters. 101 (15) (2008). [DOI] [ADS] [arXiv]
- M.S. Paoletti, R.B. Fiorito, K.R. Sreenivasan and D.P. Lathrop. Visualization of Superfluid Helium Flow. Journal of the Physical Society of Japan. 77 (11): 111007 (2008). [DOI] [ADS] [arXiv]
- G.P. Bewley, M.S. Paoletti, K.R. Sreenivasan and D.P. Lathrop. Characterization of reconnecting vortices in superfluid helium. Proceedings of the National Academy of Sciences. 105 (37): 13707-13710 (2008). [DOI] [ADS] [arXiv]
- G.P. Bewley, K.R. Sreenivasan and D.P. Lathrop. Particles for tracing turbulent liquid helium. Experiments in Fluids. 44 (6): 887-896 (2008). [PDF] [DOI] [ADS]
- G.P. Bewley, M.S. Paoletti, D.P. Lathrop and K.R. Sreenivasan. IUTAM Symposium on Computational Physics and New Perspectives in Turbulence. [DOI]
- G.P. Bewley, D.P. Lathrop and K.R. Sreenivasan. SUPERFLUID HELIUM: Visualization of quantized vortices. Nature. 441 (7093): 588-588 (2006). [DOI] [ADS]
Machine Learning Electronics
- I. Shani, L. Shaughnessy, J. Rzasa, A. Restelli, B.R Hunt, H. Komkov and D.P. Lathrop. Dynamics of analog logic-gate networks for machine learning. Chaos. 29 (123130): 1-17 (2019). [DOI] [ADS]
- H. Komkov, A. Restelli, B. Hunt, L. Shaughnessy, I. Shani and D.P. Lathrop. The Recurrent Processing Unit: Hardware for High Speed Machine Learning. arXiv. (2019). [ADS]
- H. Komkov, L. Dovlatyan, A. Perevalov and D.P. Lathrop. Reservoir Computing for Prediction of Beam Evolution in Particle Accelerators. Machine Learning and the Physical Sciences: Workshop at the 33rd Conference on Neural Information Processing Systems (NeurIPS). (2019). [ADS]
- H. Komkov, L. Pocher, A. Restelli, B. Hunt and D.P. Lathrop. RF Signal Classification using Boolean Reservoir Computing on an FPGA. International Joint Conference on Neural Networks (IJCNN) 2021. (2021). [ADS]
- H. Komkov, L. Pocher, A. Restelli, B. Hunt and D.P. Lathrop. Reservoir Computing Using Networks of CMOS Logic Gates. International Conference on Neuromorphic Systems (ICONS) 2021. (2021). [ADS]
- A. Restelli, D.P. Lathrop and H. Komkov. United States Patent Application 17/208,399: Variable Sensitivity Node.
Chaotic circuits
- M. Park, J.C. Rodgers and D.P. Lathrop. Chaotic Oscillations in a CMOS Inverter Coupled With ESD Protection Circuits Under Radio Wave Excitation. IEEE Trans. Electromagn. Compat.. 56 (3): 530-538 (2014). [DOI]
- R. Zhang, H. de S.Cavalcante, Z. Gao, D. Gauthier, J. Socolar, M. Adams and D. Lathrop. Boolean chaos. Physical Review E. 80 (4) (2009). [DOI] [ADS] [arXiv]
Magnetoturbulence, dynamos, and rotating fluids
- R.E. Rojas, A. Perevalov, T. Zürner and D.P. Lathrop. Experimental study of rough spherical Couette flows: Increasing helicity toward a dynamo state. Phys. Rev. Fluids. 6 (3): 033801 (2021). [DOI] [ADS]
- M.M. Adams, D.R. Stone, D.S. Zimmerman and D.P. Lathrop. Liquid sodium models of the Earth's core. Progress in Earth and Planetary Science. 29: 1-18 (2015). [DOI]
- S.A. Triana, D.S. Zimmerman, H.-C. Nataf, A. Thorette, V. Lekic and D.P. Lathrop. Helioseismology in a bottle: modal acoustic velocimetry. New Journal of Physics. 16 (11): 113005 (2014). [DOI] [ADS] [arXiv]
- D.S. Zimmerman, S.A. Triana, H.-C. Nataf and D.P. Lathrop. A turbulent, high magnetic Reynolds number experimental model of Earth's core. Journal of Geophysical Research (Solid Earth). 119: 4538-4557 (2014). [DOI] [ADS]
- M. Rieutord, S.A. Triana, D.S. Zimmerman and D.P. Lathrop. Excitation of inertial modes in an experimental spherical Couette flow. Physical Review E. 86 (2) (2012). [DOI] [ADS] [arXiv]
- S.A. Triana, D.S. Zimmerman and D.P. Lathrop. Precessional states in a laboratory model of the Earth's core. Journal of Geophysical Research. 117 (B4) (2012). [DOI] [ADS]
- D.P. Lathrop and C.B. Forest. Magnetic dynamos in the lab. Physics Today. 64 (7): 40 (2011). [DOI]
- H. Matsui, M. Adams, D. Kelley, S.A. Triana, D. Zimmerman, B.A. Buffett and D.P. Lathrop. Numerical and experimental investigation of shear-driven inertial oscillations in an Earth-like geometry. Physics of the Earth and Planetary Interiors. 188 (3-4): 194-202 (2011). [DOI] [ADS]
- D.S. Zimmerman, S.A. Triana and D.P. Lathrop. Bi-stability in turbulent, rotating spherical Couette flow. Physics of Fluids. 23 (6): 065104 (2011). [DOI] [ADS] [arXiv]
- D.H. Kelley, S.A. Triana, D.S. Zimmerman and D.P. Lathrop. Selection of inertial modes in spherical Couette flow. Physical Review E. 81 (2) (2010). [PDF] [DOI] [ADS]
- S.A. Triana, D.H. Kelley, D. Zimmerman, D. Sisan and D.P. Lathrop. Hopf bifurcations with fluctuating gain. Astronomische Nachrichten. 329 (7): 701-705 (2008). [PDF] [DOI] [ADS]
- D.H. Kelley, S.A. Triana, D.S. Zimmerman, A. Tilgner and D.P. Lathrop. Inertial waves driven by differential rotation in a planetary geometry. Geophysical & Astrophysical Fluid Dynamics. 101 (5-6): 469-487 (2007). [PDF] [DOI]
- D.H. Kelley, S.A. Triana, D.S. Zimmerman, B. Brawn, D.P. Lathrop and D.H. Martin. Driven inertial waves in spherical Couette flow. Chaos. 16 (4): 041105 (2006). [DOI] [ADS]
- H.H. Kolm, F. Winterberg and D. Lathrop. Early Geodynamo Work. Physics Today. 59 (10): 14 (2006). [DOI] [ADS]
- W.L. Shew and D.P. Lathrop. Liquid sodium model of geophysical core convection. Physics of the Earth and Planetary Interiors. 153 (1-3): 136-149 (2005). [DOI] [ADS]
- B.E. Brawn, K. Joshi, D.P. Lathrop, N. Mujica and D.R. Sisan. Visualizing the invisible: Ultrasound velocimetry in liquid sodium. Chaos. 15 (4): 041104 (2005). [DOI] [ADS]
- S. Fauve and D. Lathrop. The Fluid Mechanics of Astrophysics and Geophysics. [DOI]
- D. Sisan, N. Mujica, W. Tillotson, Y-M. Huang, W. Dorland, A. Hassam, T. Antonsen and D. Lathrop. Experimental Observation and Characterization of the Magnetorotational Instability. Physical Review Letters. 93 (11) (2004). [DOI] [ADS] [arXiv]
- D.R Sisan, W.L Shew and D.P Lathrop. Lorentz force effects in magneto-turbulence. Physics of the Earth and Planetary Interiors. 135 (2-3): 137-159 (2003). [PDF] [DOI] [ADS]
- W.L. Shew, D.R. Sisan and D.P. Lathrop. Mechanically forced and thermally driven flows in liquid sodium. Magnetohydrodynamics. 38: 121-127 (2002). [ADS] [URL]
- D.P Lathrop, W.L Shew and D.R Sisan. Laboratory experiments on the transition to MHD dynamos. Plasma Physics and Controlled Fusion. 43 (12A): A151-A160 (2001). [DOI] [ADS]
- D. Sweet, E. Ott, J. Finn, T. Antonsen and D. Lathrop. Blowout bifurcations and the onset of magnetic activity in turbulent dynamos. Physical Review E. 63 (6) (2001). [PDF] [DOI] [ADS]
- D. Sweet, E. Ott, T.M. Antonsen, D.P. Lathrop and J.M. Finn. Blowout bifurcations and the onset of magnetic dynamo action. Physics of Plasmas. 8 (5): 1944 (2001). [PDF] [DOI] [ADS]
- W.L. Shew, D.R. Sisan and D.P. Lathrop. Dynamo and Dynamics, a Mathematical Challenge. [URL]
- N. Peffley, A. Cawthorne and D. Lathrop. Toward a self-generating magnetic dynamo: The role of turbulence. Physical Review E. 61 (5): 5287-5294 (2000). [PDF] [DOI] [ADS]
- N.L. Peffley, A.G. Goumilevski, A.B. Cawthrone and D.P. Lathrop. Characterization of experimental dynamos. Geophysical Journal International. 142 (1): 52-58 (2000). [PDF] [DOI] [ADS]
- A.B. Hassam, J.F. Drake, D. Goel and D.P. Lathrop. Liquid metal flow encasing a magnetic cavity. Physics of Plasmas. 7 (4): 1081 (2000). [PDF] [DOI] [ADS]
Sodium fire suppression
- D. An, P.B. Sunderland and D.P. Lathrop. Suppression of sodium fires with liquid nitrogen. Fire Safety Journal. 58: 204-207 (2013). [DOI]
Taylor-Couette
- F. Nordsiek, S.G. Huisman, R.C.A. van der Veen, C. Sun, D. Lohse and D.P. Lathrop. Azimuthal velocity profiles in Rayleigh-stable TaylorndashCouette flow and implied axial angular momentum transport. Journal of Fluid Mechanics. 774: 342-362 (2015). [DOI] [ADS] [arXiv]
- M.S. Paoletti, D.P.M. van Gils, B. Dubrulle, C. Sun, D. Lohse and D.P. Lathrop. Angular momentum transport and turbulence in laboratory models of Keplerian flows. Astronomy & Astrophysics. 547: A64 (2012). [DOI] [ADS] [arXiv]
- D.P.M. van Gils, G-W. Bruggert, D.P. Lathrop, C. Sun and D. Lohse. The Twente turbulent Taylor-Couette (T3C) facility: Strongly turbulent (multiphase) flow between two independently rotating cylinders. Review of Scientific Instruments. 82 (2): 025105 (2011). [DOI] [ADS] [arXiv]
- M.S. Paoletti and D.P. Lathrop. Angular Momentum Transport in Turbulent Flow between Independently Rotating Cylinders. Physical Review Letters. 106 (2) (2011). [DOI] [ADS] [arXiv]
- T. van den Berg, D. van Gils, D. Lathrop and D. Lohse. Bubbly Turbulent Drag Reduction Is a Boundary Layer Effect. Physical Review Letters. 98 (8) (2007). [DOI] [ADS]
- N. Mujica and D.P. Lathrop. Hysteretic gravity-wave bifurcation in a highly turbulent swirling flow. Journal of Fluid Mechanics. 551 (-1): 49 (2006). [DOI] [ADS]
- T. van den Berg, S. Luther, D. Lathrop and D. Lohse. Drag Reduction in Bubbly Taylor-Couette Turbulence. Physical Review Letters. 94 (4) (2005). [DOI] [ADS]
- N. Mujica and D.P. Lathrop. Bistability and hysteresis in a highly turbulent swirling flow. Physica A: Statistical Mechanics and its Applications. 356 (1): 162-166 (2005). [DOI] [ADS]
- T. van den Berg, C. Doering, D. Lohse and D. Lathrop. Smooth and rough boundaries in turbulent Taylor-Couette flow. Physical Review E. 68 (3) (2003). [DOI] [ADS]
- D. Lathrop, J. Fineberg and H. Swinney. Transition to shear-driven turbulence in Couette-Taylor flow. Physical Review A. 46 (10): 6390-6405 (1992). [PDF] [DOI] [ADS]
- D. Lathrop, J. Fineberg and H. Swinney. Turbulent flow between concentric rotating cylinders at large Reynolds number. Physical Review Letters. 68 (10): 1515-1518 (1992). [PDF] [DOI] [ADS]
Turbulence
- G.P. Bewley, D.P. Lathrop, L.R.M. Maas and K.R. Sreenivasan. Inertial waves in rotating grid turbulence. Physics of Fluids. 19 (7): 071701 (2007). [DOI] [ADS]
- D.P. Lathrop. Fluid dynamics: Turbulence lost in transience. Nature. 443 (7107): 36-37 (2006). [DOI] [ADS]
- A. Kumar, S. Banerjee and D.P. Lathrop. Dynamics of a piecewise smooth map with singularity. Physics Letters A. 337 (1-2): 87-92 (2005). [DOI] [ADS] [arXiv]
- D.D. Lanterman, D.P. Lathrop, B.W. Zeff, R. McAllister, R. Roy and E. Kostelich. Characterizing intense rotation and dissipation in turbulent flows. Chaos. 14 (4): S8 (2004). [DOI] [ADS]
- B.W. Zeff, D.D. Lanterman, R. McAllister, R. Roy, E.J. Kostelich and D.P. Lathrop. Measuring intense rotation and dissipation in turbulent flows. Nature. 421 (6919): 146-149 (2003). [PDF] [DOI] [ADS]
- E. Boettcher, J. Fineberg and D. Lathrop. Turbulence and Wave Breaking Effects on Air-Water Gas Exchange. Physical Review Letters. 85 (9): 2030-2033 (2000). [PDF] [DOI] [ADS]
- A. Juneja, D. Lathrop, K. Sreenivasan and G. Stolovitzky. Synthetic turbulence. Physical Review E. 49 (6): 5179-5194 (1994). [PDF] [DOI] [ADS]
Strongly nonlinear surface waves
- D.P. Lathrop. Making a supersonic jet in your kitchen. Physics. 3 (2010). [DOI] [ADS]
- N. Mujica and D.P. Lathrop. Hysteretic gravity-wave bifurcation in a highly turbulent swirling flow. Journal of Fluid Mechanics. 551 (-1): 49 (2006). [DOI] [ADS]
- N. Mujica and D.P. Lathrop. Bistability and hysteresis in a highly turbulent swirling flow. Physica A: Statistical Mechanics and its Applications. 356 (1): 162-166 (2005). [DOI] [ADS]
- B.W. Zeff, B. Kleber, J. Fineberg and D.P. Lathrop. Singularity dynamics in curvature collapse and jet eruption on a fluid surface. Nature. 403 (6768): 401-404 (2000). [PDF] [DOI] [ADS]
- C. Goodridge, H. Hentschel and D. Lathrop. Breaking Faraday Waves: Critical Slowing of Droplet Ejection Rates. Physical Review Letters. 82 (15): 3062-3065 (1999). [PDF] [DOI] [ADS]
- J.Errett Hogrefe, N.L. Peffley, C.L. Goodridge, W.T. Shi, H.GeorgeE. Hentschel and D.P. Lathrop. Power-law singularities in gravity-capillary waves. Physica D: Nonlinear Phenomena. 123 (1-4): 183-205 (1998). [PDF] [DOI] [ADS]
- W. Tao Shi, C. Goodridge and D. Lathrop. Breaking waves: Bifurcations leading to a singular wave state. Physical Review E. 56 (4): 4157-4161 (1997). [PDF] [DOI] [ADS]
- C. Goodridge, W. Shi, H. Hentschel and D. Lathrop. Viscous effects in droplet-ejecting capillary waves. Physical Review E. 56 (1): 472-475 (1997). [PDF] [DOI] [ADS]
- C. Goodridge, W. Shi and D. Lathrop. Threshold Dynamics of Singular Gravity-Capillary Waves. Physical Review Letters. 76 (11): 1824-1827 (1996). [PDF] [DOI] [ADS]